HelenOS sources

root/kernel/arch/amd64/src/smp/apic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. apic_get_name
  2. l_apic_is_spurious
  3. l_apic_handle_spurious
  4. apic_spurious
  5. l_apic_timer_claim
  6. l_apic_timer_irq_handler
  7. l_apic_id
  8. apic_init
  9. apic_poll_errors
  10. l_apic_wait_for_delivery
  11. l_apic_send_custom_ipi
  12. l_apic_broadcast_custom_ipi
  13. l_apic_send_init_ipi
  14. l_apic_init
  15. l_apic_eoi
  16. l_apic_debug
  17. io_apic_read
  18. io_apic_write
  19. io_apic_change_ioredtbl
  20. io_apic_disable_irqs
  21. io_apic_enable_irqs

/*
 * Copyright (c) 2001-2004 Jakub Jermar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup kernel_ia32
 * @{
 */
/** @file
 */

#include <typedefs.h>
#include <arch/smp/apic.h>
#include <arch/smp/ap.h>
#include <arch/smp/mps.h>
#include <arch/boot/boot.h>
#include <assert.h>
#include <mm/page.h>
#include <time/delay.h>
#include <interrupt.h>
#include <arch/interrupt.h>
#include <log.h>
#include <arch/asm.h>
#include <arch.h>
#include <ddi/irq.h>
#include <genarch/pic/pic_ops.h>

#ifdef CONFIG_SMP

/*
 * Advanced Programmable Interrupt Controller for SMP systems.
 * Tested on:
 *    Bochs 2.0.2 - Bochs 2.2.6 with 2-8 CPUs
 *    Simics 2.0.28 - Simics 2.2.19 2-15 CPUs
 *    VMware Workstation 5.5 with 2 CPUs
 *    QEMU 0.8.0 with 2-15 CPUs
 *    ASUS P/I-P65UP5 + ASUS C-P55T2D REV. 1.41 with 2x 200Mhz Pentium CPUs
 *    ASUS PCH-DL with 2x 3000Mhz Pentium 4 Xeon (HT) CPUs
 *    MSI K7D Master-L with 2x 2100MHz Athlon MP CPUs
 *
 */

static const char *apic_get_name(void);
static bool l_apic_is_spurious(unsigned int);
static void l_apic_handle_spurious(unsigned int);

pic_ops_t apic_pic_ops = {
        .get_name = apic_get_name,
        .enable_irqs = io_apic_enable_irqs,
        .disable_irqs = io_apic_disable_irqs,
        .eoi = l_apic_eoi,
        .is_spurious = l_apic_is_spurious,
        .handle_spurious = l_apic_handle_spurious,
};

/*
 * These variables either stay configured as initilalized, or are changed by
 * the MP configuration code.
 *
 * Pay special attention to the volatile keyword. Without it, gcc -O2 would
 * optimize the code too much and accesses to l_apic and io_apic, that must
 * always be 32-bit, would use byte oriented instructions.
 *
 */
volatile uint32_t *l_apic = (uint32_t *) L_APIC_BASE;
volatile uint32_t *io_apic = (uint32_t *) IO_APIC_BASE;

uint32_t apic_id_mask = 0;
uint8_t bsp_l_apic = 0;

static irq_t l_apic_timer_irq;

static int apic_poll_errors(void);

#ifdef LAPIC_VERBOSE
static const char *delmod_str[] = {
        "Fixed",
        "Lowest Priority",
        "SMI",
        "Reserved",
        "NMI",
        "INIT",
        "STARTUP",
        "ExtInt"
};

static const char *destmod_str[] = {
        "Physical",
        "Logical"
};

static const char *trigmod_str[] = {
        "Edge",
        "Level"
};

static const char *mask_str[] = {
        "Unmasked",
        "Masked"
};

static const char *delivs_str[] = {
        "Idle",
        "Send Pending"
};

static const char *tm_mode_str[] = {
        "One-shot",
        "Periodic"
};

static const char *intpol_str[] = {
        "Polarity High",
        "Polarity Low"
};
#endif /* LAPIC_VERBOSE */

const char *apic_get_name(void)
{
        return "apic";
}

bool l_apic_is_spurious(unsigned int n)
{
        return n == VECTOR_APIC_SPUR;
}

void l_apic_handle_spurious(unsigned int n)
{
}

/** APIC spurious interrupt handler.
 *
 * @param n      Interrupt vector.
 * @param istate Interrupted state.
 *
 */
static void apic_spurious(unsigned int n __attribute__((unused)),
    istate_t *istate __attribute__((unused)))
{
}

static irq_ownership_t l_apic_timer_claim(irq_t *irq)
{
        return IRQ_ACCEPT;
}

static void l_apic_timer_irq_handler(irq_t *irq)
{
        /*
         * Holding a spinlock could prevent clock() from preempting
         * the current thread. In this case, we don't need to hold the
         * irq->lock so we just unlock it and then lock it again.
         */
        irq_spinlock_unlock(&irq->lock, false);
        clock();
        irq_spinlock_lock(&irq->lock, false);
}

/** Get Local APIC ID.
 *
 * @return Local APIC ID.
 *
 */
static uint8_t l_apic_id(void)
{
        l_apic_id_t idreg;

        idreg.value = l_apic[L_APIC_ID];
        return idreg.apic_id;
}

/** Initialize APIC on BSP. */
void apic_init(void)
{
        exc_register(VECTOR_APIC_SPUR, "apic_spurious", false,
            (iroutine_t) apic_spurious);

        pic_ops = &apic_pic_ops;

        /*
         * Configure interrupt routing.
         * IRQ 0 remains masked as the time signal is generated by l_apic's themselves.
         * Other interrupts will be forwarded to the lowest priority CPU.
         */
        io_apic_disable_irqs(0xffffU);

        irq_initialize(&l_apic_timer_irq);
        l_apic_timer_irq.preack = true;
        l_apic_timer_irq.inr = IRQ_CLK;
        l_apic_timer_irq.claim = l_apic_timer_claim;
        l_apic_timer_irq.handler = l_apic_timer_irq_handler;
        irq_register(&l_apic_timer_irq);

        uint8_t i;
        for (i = 0; i < IRQ_COUNT; i++) {
                int pin;

                if ((pin = smp_irq_to_pin(i)) != -1)
                        io_apic_change_ioredtbl((uint8_t) pin, DEST_ALL, (uint8_t) (IVT_IRQBASE + i), LOPRI);
        }

        /*
         * Ensure that io_apic has unique ID.
         */
        io_apic_id_t idreg;

        idreg.value = io_apic_read(IOAPICID);
        if ((1 << idreg.apic_id) & apic_id_mask) {  /* See if IO APIC ID is used already */
                for (i = 0; i < APIC_ID_COUNT; i++) {
                        if (!((1 << i) & apic_id_mask)) {
                                idreg.apic_id = i;
                                io_apic_write(IOAPICID, idreg.value);
                                break;
                        }
                }
        }

        /*
         * Configure the BSP's lapic.
         */
        l_apic_init();
        l_apic_debug();

        bsp_l_apic = l_apic_id();
}

/** Poll for APIC errors.
 *
 * Examine Error Status Register and report all errors found.
 *
 * @return 0 on error, 1 on success.
 *
 */
int apic_poll_errors(void)
{
        esr_t esr;

        esr.value = l_apic[ESR];

        if (esr.err_bitmap) {
                log_begin(LF_ARCH, LVL_ERROR);
                log_printf("APIC errors detected:");
                if (esr.send_checksum_error)
                        log_printf("\nSend Checksum Error");
                if (esr.receive_checksum_error)
                        log_printf("\nReceive Checksum Error");
                if (esr.send_accept_error)
                        log_printf("\nSend Accept Error");
                if (esr.receive_accept_error)
                        log_printf("\nReceive Accept Error");
                if (esr.send_illegal_vector)
                        log_printf("\nSend Illegal Vector");
                if (esr.received_illegal_vector)
                        log_printf("\nReceived Illegal Vector");
                if (esr.illegal_register_address)
                        log_printf("\nIllegal Register Address");
                log_end();
        }

        return !esr.err_bitmap;
}

/* Waits for the destination cpu to accept the previous ipi. */
static void l_apic_wait_for_delivery(void)
{
        icr_t icr;

        do {
                icr.lo = l_apic[ICRlo];
        } while (icr.delivs != DELIVS_IDLE);
}

/** Send one CPU an IPI vector.
 *
 * @param apicid Physical APIC ID of the destination CPU.
 * @param vector Interrupt vector to be sent.
 *
 * @return 0 on failure, 1 on success.
 */
int l_apic_send_custom_ipi(uint8_t apicid, uint8_t vector)
{
        icr_t icr;

        /* Wait for a destination cpu to accept our previous ipi. */
        l_apic_wait_for_delivery();

        icr.lo = l_apic[ICRlo];
        icr.hi = l_apic[ICRhi];

        icr.delmod = DELMOD_FIXED;
        icr.destmod = DESTMOD_PHYS;
        icr.level = LEVEL_ASSERT;
        icr.shorthand = SHORTHAND_NONE;
        icr.trigger_mode = TRIGMOD_LEVEL;
        icr.vector = vector;
        icr.dest = apicid;

        /* Send the IPI by writing to l_apic[ICRlo]. */
        l_apic[ICRhi] = icr.hi;
        l_apic[ICRlo] = icr.lo;

        return apic_poll_errors();
}

/** Send all CPUs excluding CPU IPI vector.
 *
 * @param vector Interrupt vector to be sent.
 *
 * @return 0 on failure, 1 on success.
 *
 */
int l_apic_broadcast_custom_ipi(uint8_t vector)
{
        icr_t icr;

        /* Wait for a destination cpu to accept our previous ipi. */
        l_apic_wait_for_delivery();

        icr.lo = l_apic[ICRlo];
        icr.delmod = DELMOD_FIXED;
        icr.destmod = DESTMOD_LOGIC;
        icr.level = LEVEL_ASSERT;
        icr.shorthand = SHORTHAND_ALL_EXCL;
        icr.trigger_mode = TRIGMOD_LEVEL;
        icr.vector = vector;

        l_apic[ICRlo] = icr.lo;

        return apic_poll_errors();
}

/** Universal Start-up Algorithm for bringing up the AP processors.
 *
 * @param apicid APIC ID of the processor to be brought up.
 *
 * @return 0 on failure, 1 on success.
 *
 */
int l_apic_send_init_ipi(uint8_t apicid)
{
        /*
         * Read the ICR register in and zero all non-reserved fields.
         */
        icr_t icr;

        icr.lo = l_apic[ICRlo];
        icr.hi = l_apic[ICRhi];

        icr.delmod = DELMOD_INIT;
        icr.destmod = DESTMOD_PHYS;
        icr.level = LEVEL_ASSERT;
        icr.trigger_mode = TRIGMOD_LEVEL;
        icr.shorthand = SHORTHAND_NONE;
        icr.vector = 0;
        icr.dest = apicid;

        l_apic[ICRhi] = icr.hi;
        l_apic[ICRlo] = icr.lo;

        /*
         * According to MP Specification, 20us should be enough to
         * deliver the IPI.
         */
        delay(20);

        if (!apic_poll_errors())
                return 0;

        l_apic_wait_for_delivery();

        icr.lo = l_apic[ICRlo];
        icr.delmod = DELMOD_INIT;
        icr.destmod = DESTMOD_PHYS;
        icr.level = LEVEL_DEASSERT;
        icr.shorthand = SHORTHAND_NONE;
        icr.trigger_mode = TRIGMOD_LEVEL;
        icr.vector = 0;
        l_apic[ICRlo] = icr.lo;

        /*
         * Wait 10ms as MP Specification specifies.
         */
        delay(10000);

        if (!is_82489DX_apic(l_apic[LAVR])) {
                /*
                 * If this is not 82489DX-based l_apic we must send two STARTUP IPI's.
                 */
                unsigned int i;
                for (i = 0; i < 2; i++) {
                        icr.lo = l_apic[ICRlo];
                        icr.vector = (uint8_t) (((uintptr_t) ap_boot) >> 12); /* calculate the reset vector */
                        icr.delmod = DELMOD_STARTUP;
                        icr.destmod = DESTMOD_PHYS;
                        icr.level = LEVEL_ASSERT;
                        icr.shorthand = SHORTHAND_NONE;
                        icr.trigger_mode = TRIGMOD_LEVEL;
                        l_apic[ICRlo] = icr.lo;
                        delay(200);
                }
        }

        return apic_poll_errors();
}

/** Initialize Local APIC. */
void l_apic_init(void)
{
        /* Initialize LVT Error register. */
        lvt_error_t error;

        error.value = l_apic[LVT_Err];
        error.masked = true;
        l_apic[LVT_Err] = error.value;

        /* Initialize LVT LINT0 register. */
        lvt_lint_t lint;

        lint.value = l_apic[LVT_LINT0];
        lint.masked = true;
        l_apic[LVT_LINT0] = lint.value;

        /* Initialize LVT LINT1 register. */
        lint.value = l_apic[LVT_LINT1];
        lint.masked = true;
        l_apic[LVT_LINT1] = lint.value;

        /* Task Priority Register initialization. */
        tpr_t tpr;

        tpr.value = l_apic[TPR];
        tpr.pri_sc = 0;
        tpr.pri = 0;
        l_apic[TPR] = tpr.value;

        /* Spurious-Interrupt Vector Register initialization. */
        svr_t svr;

        svr.value = l_apic[SVR];
        svr.vector = VECTOR_APIC_SPUR;
        svr.lapic_enabled = true;
        svr.focus_checking = true;
        l_apic[SVR] = svr.value;

        if (CPU->arch.family >= 6)
                enable_l_apic_in_msr();

        /* Interrupt Command Register initialization. */
        icr_t icr;

        icr.lo = l_apic[ICRlo];
        icr.delmod = DELMOD_INIT;
        icr.destmod = DESTMOD_PHYS;
        icr.level = LEVEL_DEASSERT;
        icr.shorthand = SHORTHAND_ALL_INCL;
        icr.trigger_mode = TRIGMOD_LEVEL;
        l_apic[ICRlo] = icr.lo;

        /* Timer Divide Configuration Register initialization. */
        tdcr_t tdcr;

        tdcr.value = l_apic[TDCR];
        tdcr.div_value = DIVIDE_1;
        l_apic[TDCR] = tdcr.value;

        /* Program local timer. */
        lvt_tm_t tm;

        tm.value = l_apic[LVT_Tm];
        tm.vector = VECTOR_CLK;
        tm.mode = TIMER_PERIODIC;
        tm.masked = false;
        l_apic[LVT_Tm] = tm.value;

        /*
         * Measure and configure the timer to generate timer
         * interrupt with period 1s/HZ seconds.
         */
        uint32_t t1 = l_apic[CCRT];
        l_apic[ICRT] = 0xffffffff;

        while (l_apic[CCRT] == t1)
                ;

        t1 = l_apic[CCRT];
        delay(1000000 / HZ);
        uint32_t t2 = l_apic[CCRT];

        l_apic[ICRT] = t1 - t2;

        /* Program Logical Destination Register. */
        assert(CPU->id < 8);
        ldr_t ldr;

        ldr.value = l_apic[LDR];
        ldr.id = (uint8_t) (1 << CPU->id);
        l_apic[LDR] = ldr.value;

        /* Program Destination Format Register for Flat mode. */
        dfr_t dfr;

        dfr.value = l_apic[DFR];
        dfr.model = MODEL_FLAT;
        l_apic[DFR] = dfr.value;
}

/** Local APIC End of Interrupt. */
void l_apic_eoi(unsigned int ignored)
{
        l_apic[EOI] = 0;
}

/** Dump content of Local APIC registers. */
void l_apic_debug(void)
{
#ifdef LAPIC_VERBOSE
        log_begin(LF_ARCH, LVL_DEBUG);
        log_printf("LVT on cpu%u, LAPIC ID: %" PRIu8 "\n",
            CPU->id, l_apic_id());

        lvt_tm_t tm;
        tm.value = l_apic[LVT_Tm];
        log_printf("LVT Tm: vector=%" PRIu8 ", %s, %s, %s\n",
            tm.vector, delivs_str[tm.delivs], mask_str[tm.masked],
            tm_mode_str[tm.mode]);

        lvt_lint_t lint;
        lint.value = l_apic[LVT_LINT0];
        log_printf("LVT LINT0: vector=%" PRIu8 ", %s, %s, %s, irr=%u, %s, %s\n",
            tm.vector, delmod_str[lint.delmod], delivs_str[lint.delivs],
            intpol_str[lint.intpol], lint.irr, trigmod_str[lint.trigger_mode],
            mask_str[lint.masked]);

        lint.value = l_apic[LVT_LINT1];
        log_printf("LVT LINT1: vector=%" PRIu8 ", %s, %s, %s, irr=%u, %s, %s\n",
            tm.vector, delmod_str[lint.delmod], delivs_str[lint.delivs],
            intpol_str[lint.intpol], lint.irr, trigmod_str[lint.trigger_mode],
            mask_str[lint.masked]);

        lvt_error_t error;
        error.value = l_apic[LVT_Err];
        log_printf("LVT Err: vector=%" PRIu8 ", %s, %s\n", error.vector,
            delivs_str[error.delivs], mask_str[error.masked]);
        log_end();
#endif
}

/** Read from IO APIC register.
 *
 * @param address IO APIC register address.
 *
 * @return Content of the addressed IO APIC register.
 *
 */
uint32_t io_apic_read(uint8_t address)
{
        io_regsel_t regsel;

        regsel.value = io_apic[IOREGSEL];
        regsel.reg_addr = address;
        io_apic[IOREGSEL] = regsel.value;
        return io_apic[IOWIN];
}

/** Write to IO APIC register.
 *
 * @param address IO APIC register address.
 * @param val     Content to be written to the addressed IO APIC register.
 *
 */
void io_apic_write(uint8_t address, uint32_t val)
{
        io_regsel_t regsel;

        regsel.value = io_apic[IOREGSEL];
        regsel.reg_addr = address;
        io_apic[IOREGSEL] = regsel.value;
        io_apic[IOWIN] = val;
}

/** Change some attributes of one item in I/O Redirection Table.
 *
 * @param pin   IO APIC pin number.
 * @param dest  Interrupt destination address.
 * @param vec   Interrupt vector to trigger.
 * @param flags Flags.
 *
 */
void io_apic_change_ioredtbl(uint8_t pin, uint8_t dest, uint8_t vec,
    unsigned int flags)
{
        unsigned int dlvr;

        if (flags & LOPRI)
                dlvr = DELMOD_LOWPRI;
        else
                dlvr = DELMOD_FIXED;

        io_redirection_reg_t reg;
        reg.lo = io_apic_read((uint8_t) (IOREDTBL + pin * 2));
        reg.hi = io_apic_read((uint8_t) (IOREDTBL + pin * 2 + 1));

        reg.dest = dest;
        reg.destmod = DESTMOD_LOGIC;
        reg.trigger_mode = TRIGMOD_EDGE;
        reg.intpol = POLARITY_HIGH;
        reg.delmod = dlvr;
        reg.intvec = vec;

        io_apic_write((uint8_t) (IOREDTBL + pin * 2), reg.lo);
        io_apic_write((uint8_t) (IOREDTBL + pin * 2 + 1), reg.hi);
}

/** Mask IRQs in IO APIC.
 *
 * @param irqmask Bitmask of IRQs to be masked (0 = do not mask, 1 = mask).
 *
 */
void io_apic_disable_irqs(uint16_t irqmask)
{
        unsigned int i;
        for (i = 0; i < 16; i++) {
                if (irqmask & (1 << i)) {
                        /*
                         * Mask the signal input in IO APIC if there is a
                         * mapping for the respective IRQ number.
                         */
                        int pin = smp_irq_to_pin(i);
                        if (pin != -1) {
                                io_redirection_reg_t reg;

                                reg.lo = io_apic_read((uint8_t) (IOREDTBL + pin * 2));
                                reg.masked = true;
                                io_apic_write((uint8_t) (IOREDTBL + pin * 2), reg.lo);
                        }

                }
        }
}

/** Unmask IRQs in IO APIC.
 *
 * @param irqmask Bitmask of IRQs to be unmasked (0 = do not unmask, 1 = unmask).
 *
 */
void io_apic_enable_irqs(uint16_t irqmask)
{
        unsigned int i;
        for (i = 0; i < 16; i++) {
                if (irqmask & (1 << i)) {
                        /*
                         * Unmask the signal input in IO APIC if there is a
                         * mapping for the respective IRQ number.
                         */
                        int pin = smp_irq_to_pin(i);
                        if (pin != -1) {
                                io_redirection_reg_t reg;

                                reg.lo = io_apic_read((uint8_t) (IOREDTBL + pin * 2));
                                reg.masked = false;
                                io_apic_write((uint8_t) (IOREDTBL + pin * 2), reg.lo);
                        }

                }
        }
}

#endif /* CONFIG_SMP */

/** @}
 */

/* [<][>][^][v][top][bottom][index][help] */
HelenOS homepage, sources at GitHub