HelenOS sources

root/uspace/lib/crypto/aes.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sub_byte
  2. sub_bytes
  3. shift_rows
  4. inv_shift_rows
  5. galois_mult
  6. mix_columns
  7. inv_mix_columns
  8. add_round_key
  9. sub_word
  10. rot_word
  11. key_expansion
  12. aes_encrypt
  13. aes_decrypt

/*
 * Copyright (c) 2015 Jan Kolarik
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @file aes.c
 *
 * Implementation of AES-128 symmetric cipher cryptographic algorithm.
 *
 * Based on FIPS 197.
 */

#include <stdbool.h>
#include <errno.h>
#include <mem.h>
#include "crypto.h"

/* Number of elements in rows/columns in AES arrays. */
#define ELEMS  4

/* Number of elements (words) in cipher. */
#define CIPHER_ELEMS  4

/* Length of AES block. */
#define BLOCK_LEN  16

/* Number of iterations in AES algorithm. */
#define ROUNDS  10

/** Irreducible polynomial used in AES algorithm.
 *
 * NOTE: x^8 + x^4 + x^3 + x + 1.
 *
 */
#define AES_IP  0x1b

/** Precomputed values for AES sub_byte transformation. */
static const uint8_t sbox[BLOCK_LEN][BLOCK_LEN] = {
        {
                0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
                0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76
        },
        {
                0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
                0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0
        },
        {
                0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
                0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15
        },
        {
                0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
                0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75
        },
        {
                0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
                0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84
        },
        {
                0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
                0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf
        },
        {
                0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
                0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8
        },
        {
                0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
                0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2
        },
        {
                0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
                0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73
        },
        {
                0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
                0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb
        },
        {
                0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
                0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79
        },
        {
                0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
                0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08
        },
        {
                0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
                0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a
        },
        {
                0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
                0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e
        },
        {
                0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
                0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf
        },
        {
                0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
                0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
        }
};

/** Precomputed values for AES inv_sub_byte transformation. */
static uint8_t inv_sbox[BLOCK_LEN][BLOCK_LEN] = {
        {
                0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
                0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
        },
        {
                0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
                0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
        },
        {
                0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
                0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
        },
        {
                0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
                0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
        },
        {
                0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
                0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
        },
        {
                0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
                0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
        },
        {
                0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
                0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
        },
        {
                0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
                0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
        },
        {
                0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
                0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
        },
        {
                0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
                0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
        },
        {
                0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
                0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
        },
        {
                0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
                0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
        },
        {
                0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
                0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
        },
        {
                0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
                0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
        },
        {
                0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
                0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
        },
        {
                0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
                0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
        }
};

/** Precomputed values of powers of 2 in GF(2^8) left shifted by 24b. */
static const uint32_t r_con_array[] = {
        0x01000000, 0x02000000, 0x04000000, 0x08000000,
        0x10000000, 0x20000000, 0x40000000, 0x80000000,
        0x1b000000, 0x36000000
};

/** Perform substitution transformation on given byte.
 *
 * @param byte Input byte.
 * @param inv  Flag indicating whether to use inverse table.
 *
 * @return Substituted value.
 *
 */
static uint8_t sub_byte(uint8_t byte, bool inv)
{
        uint8_t i = byte >> 4;
        uint8_t j = byte & 0xF;

        if (!inv)
                return sbox[i][j];

        return inv_sbox[i][j];
}

/** Perform substitution transformation on state table.
 *
 * @param state State table to be modified.
 * @param inv   Flag indicating whether to use inverse table.
 *
 */
static void sub_bytes(uint8_t state[ELEMS][ELEMS], bool inv)
{
        uint8_t val;

        for (size_t i = 0; i < ELEMS; i++) {
                for (size_t j = 0; j < ELEMS; j++) {
                        val = state[i][j];
                        state[i][j] = sub_byte(val, inv);
                }
        }
}

/** Perform shift rows transformation on state table.
 *
 * @param state State table to be modified.
 *
 */
static void shift_rows(uint8_t state[ELEMS][ELEMS])
{
        uint8_t temp[ELEMS];

        for (size_t i = 1; i < ELEMS; i++) {
                memcpy(temp, state[i], i);
                memmove(state[i], state[i] + i, ELEMS - i);
                memcpy(state[i] + ELEMS - i, temp, i);
        }
}

/** Perform inverted shift rows transformation on state table.
 *
 * @param state State table to be modified.
 *
 */
static void inv_shift_rows(uint8_t state[ELEMS][ELEMS])
{
        uint8_t temp[ELEMS];

        for (size_t i = 1; i < ELEMS; i++) {
                memcpy(temp, state[i], ELEMS - i);
                memmove(state[i], state[i] + ELEMS - i, i);
                memcpy(state[i] + i, temp, ELEMS - i);
        }
}

/** Multiplication in GF(2^8).
 *
 * @param x First factor.
 * @param y Second factor.
 *
 * @return Multiplication of given factors in GF(2^8).
 *
 */
static uint8_t galois_mult(uint8_t x, uint8_t y)
{
        uint8_t result = 0;
        uint8_t f_bith;

        for (size_t i = 0; i < 8; i++) {
                if (y & 1)
                        result ^= x;

                f_bith = (x & 0x80);
                x <<= 1;

                if (f_bith)
                        x ^= AES_IP;

                y >>= 1;
        }

        return result;
}

/** Perform mix columns transformation on state table.
 *
 * @param state State table to be modified.
 *
 */
static void mix_columns(uint8_t state[ELEMS][ELEMS])
{
        uint8_t orig_state[ELEMS][ELEMS];
        memcpy(orig_state, state, BLOCK_LEN);

        for (size_t j = 0; j < ELEMS; j++) {
                state[0][j] =
                    galois_mult(0x2, orig_state[0][j]) ^
                    galois_mult(0x3, orig_state[1][j]) ^
                    orig_state[2][j] ^
                    orig_state[3][j];
                state[1][j] =
                    orig_state[0][j] ^
                    galois_mult(0x2, orig_state[1][j]) ^
                    galois_mult(0x3, orig_state[2][j]) ^
                    orig_state[3][j];
                state[2][j] =
                    orig_state[0][j] ^
                    orig_state[1][j] ^
                    galois_mult(0x2, orig_state[2][j]) ^
                    galois_mult(0x3, orig_state[3][j]);
                state[3][j] =
                    galois_mult(0x3, orig_state[0][j]) ^
                    orig_state[1][j] ^
                    orig_state[2][j] ^
                    galois_mult(0x2, orig_state[3][j]);
        }
}

/** Perform inverted mix columns transformation on state table.
 *
 * @param state State table to be modified.
 *
 */
static void inv_mix_columns(uint8_t state[ELEMS][ELEMS])
{
        uint8_t orig_state[ELEMS][ELEMS];
        memcpy(orig_state, state, BLOCK_LEN);

        for (size_t j = 0; j < ELEMS; j++) {
                state[0][j] =
                    galois_mult(0x0e, orig_state[0][j]) ^
                    galois_mult(0x0b, orig_state[1][j]) ^
                    galois_mult(0x0d, orig_state[2][j]) ^
                    galois_mult(0x09, orig_state[3][j]);
                state[1][j] =
                    galois_mult(0x09, orig_state[0][j]) ^
                    galois_mult(0x0e, orig_state[1][j]) ^
                    galois_mult(0x0b, orig_state[2][j]) ^
                    galois_mult(0x0d, orig_state[3][j]);
                state[2][j] =
                    galois_mult(0x0d, orig_state[0][j]) ^
                    galois_mult(0x09, orig_state[1][j]) ^
                    galois_mult(0x0e, orig_state[2][j]) ^
                    galois_mult(0x0b, orig_state[3][j]);
                state[3][j] =
                    galois_mult(0x0b, orig_state[0][j]) ^
                    galois_mult(0x0d, orig_state[1][j]) ^
                    galois_mult(0x09, orig_state[2][j]) ^
                    galois_mult(0x0e, orig_state[3][j]);
        }
}

/** Perform round key transformation on state table.
 *
 * @param state     State table to be modified.
 * @param round_key Round key to be applied on state table.
 *
 */
static void add_round_key(uint8_t state[ELEMS][ELEMS], uint32_t *round_key)
{
        uint8_t byte_round;
        uint8_t shift;
        uint32_t mask = 0xff;

        for (size_t j = 0; j < ELEMS; j++) {
                for (size_t i = 0; i < ELEMS; i++) {
                        shift = 24 - 8 * i;
                        byte_round = (round_key[j] & (mask << shift)) >> shift;
                        state[i][j] = state[i][j] ^ byte_round;
                }
        }
}

/** Perform substitution transformation on given word.
 *
 * @param byte Input word.
 *
 * @return Substituted word.
 *
 */
static uint32_t sub_word(uint32_t word)
{
        uint32_t temp = word;
        uint8_t *start = (uint8_t *) &temp;

        for (size_t i = 0; i < 4; i++)
                *(start + i) = sub_byte(*(start + i), false);

        return temp;
}

/** Perform left rotation by one byte on given word.
 *
 * @param byte Input word.
 *
 * @return Rotated word.
 *
 */
static uint32_t rot_word(uint32_t word)
{
        return (word << 8 | word >> 24);
}

/** Key expansion procedure for AES algorithm.
 *
 * @param key     Input key.
 * @param key_exp Result key expansion.
 *
 */
static void key_expansion(uint8_t *key, uint32_t *key_exp)
{
        uint32_t temp;

        for (size_t i = 0; i < CIPHER_ELEMS; i++) {
                key_exp[i] =
                    (key[4 * i] << 24) +
                    (key[4 * i + 1] << 16) +
                    (key[4 * i + 2] << 8) +
                    (key[4 * i + 3]);
        }

        for (size_t i = CIPHER_ELEMS; i < ELEMS * (ROUNDS + 1); i++) {
                temp = key_exp[i - 1];

                if ((i % CIPHER_ELEMS) == 0) {
                        temp = sub_word(rot_word(temp)) ^
                            r_con_array[i / CIPHER_ELEMS - 1];
                }

                key_exp[i] = key_exp[i - CIPHER_ELEMS] ^ temp;
        }
}

/** AES-128 encryption algorithm.
 *
 * @param key    Input key.
 * @param input  Input data sequence to be encrypted.
 * @param output Encrypted data sequence.
 *
 * @return EINVAL when input or key not specified,
 *         ENOMEM when pointer for output is not allocated,
 *         otherwise EOK.
 *
 */
errno_t aes_encrypt(uint8_t *key, uint8_t *input, uint8_t *output)
{
        if ((!key) || (!input))
                return EINVAL;

        if (!output)
                return ENOMEM;

        /* Create key expansion. */
        uint32_t key_exp[ELEMS * (ROUNDS + 1)];
        key_expansion(key, key_exp);

        /* Copy input into state array. */
        uint8_t state[ELEMS][ELEMS];
        for (size_t i = 0; i < ELEMS; i++) {
                for (size_t j = 0; j < ELEMS; j++)
                        state[i][j] = input[i + ELEMS * j];
        }

        /* Processing loop. */
        add_round_key(state, key_exp);

        for (size_t k = 1; k <= ROUNDS; k++) {
                sub_bytes(state, false);
                shift_rows(state);

                if (k < ROUNDS)
                        mix_columns(state);

                add_round_key(state, key_exp + k * ELEMS);
        }

        /* Copy state array into output. */
        for (size_t i = 0; i < ELEMS; i++) {
                for (size_t j = 0; j < ELEMS; j++)
                        output[i + j * ELEMS] = state[i][j];
        }

        return EOK;
}

/** AES-128 decryption algorithm.
 *
 * @param key    Input key.
 * @param input  Input data sequence to be decrypted.
 * @param output Decrypted data sequence.
 *
 * @return EINVAL when input or key not specified,
 *         ENOMEM when pointer for output is not allocated,
 *         otherwise EOK.
 *
 */
errno_t aes_decrypt(uint8_t *key, uint8_t *input, uint8_t *output)
{
        if ((!key) || (!input))
                return EINVAL;

        if (!output)
                return ENOMEM;

        /* Create key expansion. */
        uint32_t key_exp[ELEMS * (ROUNDS + 1)];
        key_expansion(key, key_exp);

        /* Copy input into state array. */
        uint8_t state[ELEMS][ELEMS];
        for (size_t i = 0; i < ELEMS; i++) {
                for (size_t j = 0; j < ELEMS; j++)
                        state[i][j] = input[i + ELEMS * j];
        }

        /* Processing loop. */
        add_round_key(state, key_exp + ROUNDS * ELEMS);

        for (int k = ROUNDS - 1; k >= 0; k--) {
                inv_shift_rows(state);
                sub_bytes(state, true);
                add_round_key(state, key_exp + k * ELEMS);

                if (k > 0)
                        inv_mix_columns(state);
        }

        /* Copy state array into output. */
        for (size_t i = 0; i < ELEMS; i++) {
                for (size_t j = 0; j < ELEMS; j++)
                        output[i + j * ELEMS] = state[i][j];
        }

        return EOK;
}

/* [<][>][^][v][top][bottom][index][help] */
HelenOS homepage, sources at GitHub