/*
* Copyright (c) 2008 Jakub Jermar
* Copyright (c) 2012 Adam Hraska
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup libc
* @{
*/
/** @file
*/
/*
* This is an implementation of a generic resizable chained hash table.
*
* The table grows to 2*n+1 buckets each time, starting at n == 89,
* per Thomas Wang's recommendation:
* http://www.concentric.net/~Ttwang/tech/hashsize.htm
*
* This policy produces prime table sizes for the first five resizes
* and generally produces table sizes which are either prime or
* have fairly large (prime/odd) divisors. Having a prime table size
* mitigates the use of suboptimal hash functions and distributes
* items over the whole table.
*/
#include <adt/hash_table.h>
#include <adt/list.h>
#include <assert.h>
#include <stdlib.h>
#include <str.h>
/* Optimal initial bucket count. See comment above. */
#define HT_MIN_BUCKETS 89
/* The table is resized when the average load per bucket exceeds this number. */
#define HT_MAX_LOAD 2
static size_t round_up_size(size_t);
static bool alloc_table(size_t, list_t **);
static void clear_items(hash_table_t *);
static void resize(hash_table_t *, size_t);
static void grow_if_needed(hash_table_t *);
static void shrink_if_needed(hash_table_t *);
/* Dummy do nothing callback to invoke in place of remove_callback == NULL. */
static void nop_remove_callback(ht_link_t *item)
{
/* no-op */
}
/** Create chained hash table.
*
* @param h Hash table structure. Will be initialized by this call.
* @param init_size Initial desired number of hash table buckets. Pass zero
* if you want the default initial size.
* @param max_load The table is resized when the average load per bucket
* exceeds this number. Pass zero if you want the default.
* @param op Hash table operations structure. remove_callback()
* is optional and can be NULL if no action is to be taken
* upon removal. equal() is optional if and only if
* hash_table_insert_unique() will never be invoked.
* All other operations are mandatory.
*
* @return True on success
*
*/
bool hash_table_create(hash_table_t *h, size_t init_size, size_t max_load,
const hash_table_ops_t *op)
{
assert(h);
assert(op && op->hash && op->key_hash && op->key_equal);
/* Check for compulsory ops. */
if (!op || !op->hash || !op->key_hash || !op->key_equal)
return false;
h->bucket_cnt = round_up_size(init_size);
if (!alloc_table(h->bucket_cnt, &h->bucket))
return false;
h->max_load = (max_load == 0) ? HT_MAX_LOAD : max_load;
h->item_cnt = 0;
h->op = op;
h->full_item_cnt = h->max_load * h->bucket_cnt;
h->apply_ongoing = false;
return true;
}
/** Destroy a hash table instance.
*
* @param h Hash table to be destroyed.
*
*/
void hash_table_destroy(hash_table_t *h)
{
assert(h && h->bucket);
assert(!h->apply_ongoing);
clear_items(h);
free(h->bucket);
h->bucket = NULL;
h->bucket_cnt = 0;
}
/** Returns true if there are no items in the table. */
bool hash_table_empty(hash_table_t *h)
{
assert(h && h->bucket);
return h->item_cnt == 0;
}
/** Returns the number of items in the table. */
size_t hash_table_size(hash_table_t *h)
{
assert(h && h->bucket);
return h->item_cnt;
}
/** Remove all elements from the hash table
*
* @param h Hash table to be cleared
*/
void hash_table_clear(hash_table_t *h)
{
assert(h && h->bucket);
assert(!h->apply_ongoing);
clear_items(h);
/* Shrink the table to its minimum size if possible. */
if (HT_MIN_BUCKETS < h->bucket_cnt) {
resize(h, HT_MIN_BUCKETS);
}
}
/** Unlinks and removes all items but does not resize. */
static void clear_items(hash_table_t *h)
{
if (h->item_cnt == 0)
return;
void (*remove_cb)(ht_link_t *) = h->op->remove_callback ? h->op->remove_callback : nop_remove_callback;
for (size_t idx = 0; idx < h->bucket_cnt; ++idx) {
list_foreach_safe(h->bucket[idx], cur, next) {
assert(cur);
ht_link_t *cur_link = member_to_inst(cur, ht_link_t, link);
list_remove(cur);
remove_cb(cur_link);
}
}
h->item_cnt = 0;
}
/** Insert item into a hash table.
*
* @param h Hash table.
* @param item Item to be inserted into the hash table.
*/
void hash_table_insert(hash_table_t *h, ht_link_t *item)
{
assert(item);
assert(h && h->bucket);
assert(!h->apply_ongoing);
size_t idx = h->op->hash(item) % h->bucket_cnt;
list_append(&item->link, &h->bucket[idx]);
++h->item_cnt;
grow_if_needed(h);
}
/** Insert item into a hash table if not already present.
*
* @param h Hash table.
* @param item Item to be inserted into the hash table.
*
* @return False if such an item had already been inserted.
* @return True if the inserted item was the only item with such a lookup key.
*/
bool hash_table_insert_unique(hash_table_t *h, ht_link_t *item)
{
assert(item);
assert(h && h->bucket && h->bucket_cnt);
assert(h->op && h->op->hash && h->op->equal);
assert(!h->apply_ongoing);
size_t idx = h->op->hash(item) % h->bucket_cnt;
/* Check for duplicates. */
list_foreach(h->bucket[idx], link, ht_link_t, cur_link) {
/*
* We could filter out items using their hashes first, but
* calling equal() might very well be just as fast.
*/
if (h->op->equal(cur_link, item))
return false;
}
list_append(&item->link, &h->bucket[idx]);
++h->item_cnt;
grow_if_needed(h);
return true;
}
/** Search hash table for an item matching keys.
*
* @param h Hash table.
* @param key Array of all keys needed to compute hash index.
*
* @return Matching item on success, NULL if there is no such item.
*
*/
ht_link_t *hash_table_find(const hash_table_t *h, const void *key)
{
assert(h && h->bucket);
size_t hash = h->op->key_hash(key);
size_t idx = hash % h->bucket_cnt;
list_foreach(h->bucket[idx], link, ht_link_t, cur_link) {
if (h->op->key_equal(key, hash, cur_link))
return cur_link;
}
return NULL;
}
/** Find the next item equal to item. */
ht_link_t *
hash_table_find_next(const hash_table_t *h, ht_link_t *item)
{
assert(item);
assert(h && h->bucket);
size_t idx = h->op->hash(item) % h->bucket_cnt;
list_t *list = &h->bucket[idx];
link_t *cur = list_next(&item->link, list);
/* Traverse the list until we reach its end. */
for (; cur != NULL; cur = list_next(cur, list)) {
ht_link_t *cur_link = member_to_inst(cur, ht_link_t, link);
if (h->op->equal(cur_link, item))
return cur_link;
}
return NULL;
}
/** Remove all matching items from hash table.
*
* For each removed item, h->remove_callback() is called.
*
* @param h Hash table.
* @param key Array of keys that will be compared against items of
* the hash table.
*
* @return Returns the number of removed items.
*/
size_t hash_table_remove(hash_table_t *h, const void *key)
{
assert(h && h->bucket);
assert(!h->apply_ongoing);
size_t hash = h->op->key_hash(key);
size_t idx = hash % h->bucket_cnt;
size_t removed = 0;
list_foreach_safe(h->bucket[idx], cur, next) {
ht_link_t *cur_link = member_to_inst(cur, ht_link_t, link);
if (h->op->key_equal(key, hash, cur_link)) {
++removed;
list_remove(cur);
if (h->op->remove_callback)
h->op->remove_callback(cur_link);
}
}
h->item_cnt -= removed;
shrink_if_needed(h);
return removed;
}
/** Removes an item already present in the table. The item must be in the table. */
void hash_table_remove_item(hash_table_t *h, ht_link_t *item)
{
assert(item);
assert(h && h->bucket);
assert(link_in_use(&item->link));
list_remove(&item->link);
--h->item_cnt;
if (h->op->remove_callback)
h->op->remove_callback(item);
shrink_if_needed(h);
}
/** Apply function to all items in hash table.
*
* @param h Hash table.
* @param f Function to be applied. Return false if no more items
* should be visited. The functor may only delete the supplied
* item. It must not delete the successor of the item passed
* in the first argument.
* @param arg Argument to be passed to the function.
*/
void hash_table_apply(hash_table_t *h, bool (*f)(ht_link_t *, void *), void *arg)
{
assert(f);
assert(h && h->bucket);
if (h->item_cnt == 0)
return;
h->apply_ongoing = true;
for (size_t idx = 0; idx < h->bucket_cnt; ++idx) {
list_foreach_safe(h->bucket[idx], cur, next) {
ht_link_t *cur_link = member_to_inst(cur, ht_link_t, link);
/*
* The next pointer had already been saved. f() may safely
* delete cur (but not next!).
*/
if (!f(cur_link, arg))
goto out;
}
}
out:
h->apply_ongoing = false;
shrink_if_needed(h);
grow_if_needed(h);
}
/** Rounds up size to the nearest suitable table size. */
static size_t round_up_size(size_t size)
{
size_t rounded_size = HT_MIN_BUCKETS;
while (rounded_size < size) {
rounded_size = 2 * rounded_size + 1;
}
return rounded_size;
}
/** Allocates and initializes the desired number of buckets. True if successful. */
static bool alloc_table(size_t bucket_cnt, list_t **pbuckets)
{
assert(pbuckets && HT_MIN_BUCKETS <= bucket_cnt);
list_t *buckets = malloc(bucket_cnt * sizeof(list_t));
if (!buckets)
return false;
for (size_t i = 0; i < bucket_cnt; i++)
list_initialize(&buckets[i]);
*pbuckets = buckets;
return true;
}
/** Shrinks the table if the table is only sparely populated. */
static inline void shrink_if_needed(hash_table_t *h)
{
if (h->item_cnt <= h->full_item_cnt / 4 && HT_MIN_BUCKETS < h->bucket_cnt) {
/*
* Keep the bucket_cnt odd (possibly also prime).
* Shrink from 2n + 1 to n. Integer division discards the +1.
*/
size_t new_bucket_cnt = h->bucket_cnt / 2;
resize(h, new_bucket_cnt);
}
}
/** Grows the table if table load exceeds the maximum allowed. */
static inline void grow_if_needed(hash_table_t *h)
{
/* Grow the table if the average bucket load exceeds the maximum. */
if (h->full_item_cnt < h->item_cnt) {
/* Keep the bucket_cnt odd (possibly also prime). */
size_t new_bucket_cnt = 2 * h->bucket_cnt + 1;
resize(h, new_bucket_cnt);
}
}
/** Allocates and rehashes items to a new table. Frees the old table. */
static void resize(hash_table_t *h, size_t new_bucket_cnt)
{
assert(h && h->bucket);
assert(HT_MIN_BUCKETS <= new_bucket_cnt);
/* We are traversing the table and resizing would mess up the buckets. */
if (h->apply_ongoing)
return;
list_t *new_buckets;
/* Leave the table as is if we cannot resize. */
if (!alloc_table(new_bucket_cnt, &new_buckets))
return;
if (0 < h->item_cnt) {
/* Rehash all the items to the new table. */
for (size_t old_idx = 0; old_idx < h->bucket_cnt; ++old_idx) {
list_foreach_safe(h->bucket[old_idx], cur, next) {
ht_link_t *cur_link = member_to_inst(cur, ht_link_t, link);
size_t new_idx = h->op->hash(cur_link) % new_bucket_cnt;
list_remove(cur);
list_append(cur, &new_buckets[new_idx]);
}
}
}
free(h->bucket);
h->bucket = new_buckets;
h->bucket_cnt = new_bucket_cnt;
h->full_item_cnt = h->max_load * h->bucket_cnt;
}
/** @}
*/