HelenOS sources

root/kernel/generic/src/mm/as.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. as_constructor
  2. as_destructor
  3. as_init
  4. as_create
  5. as_destroy
  6. as_hold
  7. as_release
  8. as_area_first
  9. as_area_next
  10. area_is_conflicting
  11. check_area_conflicts
  12. as_get_unmapped_area
  13. as_pagemap_getkey
  14. as_pagemap_cmp
  15. as_pagemap_initialize
  16. as_pagemap_finalize
  17. as_pagemap_first
  18. as_pagemap_next
  19. as_pagemap_find
  20. as_pagemap_insert
  21. as_pagemap_remove
  22. sh_info_remove_reference
  23. as_area_create
  24. find_area_and_lock
  25. as_area_resize
  26. as_area_destroy
  27. as_area_share
  28. as_area_check_access
  29. area_flags_to_page_flags
  30. as_area_change_flags
  31. as_page_fault
  32. as_switch
  33. as_area_get_flags
  34. as_areas_getkey
  35. as_areas_cmp
  36. page_table_create
  37. page_table_destroy
  38. page_table_lock
  39. page_table_unlock
  40. page_table_locked
  41. as_area_get_size
  42. used_space_initialize
  43. used_space_finalize
  44. used_space_first
  45. used_space_next
  46. used_space_last
  47. used_space_find_gteq
  48. used_space_getkey
  49. used_space_cmp
  50. used_space_remove_ival
  51. used_space_shorten_ival
  52. used_space_insert
  53. sys_as_area_create
  54. sys_as_area_resize
  55. sys_as_area_change_flags
  56. sys_as_area_get_info
  57. sys_as_area_destroy
  58. as_get_area_info
  59. as_print

/*
 * Copyright (c) 2010 Jakub Jermar
 * Copyright (c) 2018 Jiri Svoboda
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup kernel_generic_mm
 * @{
 */

/**
 * @file
 * @brief Address space related functions.
 *
 * This file contains address space manipulation functions.
 * Roughly speaking, this is a higher-level client of
 * Virtual Address Translation (VAT) subsystem.
 *
 * Functionality provided by this file allows one to
 * create address spaces and create, resize and share
 * address space areas.
 *
 * @see page.c
 *
 */

#include <mm/as.h>
#include <arch/mm/as.h>
#include <mm/page.h>
#include <mm/frame.h>
#include <mm/slab.h>
#include <mm/tlb.h>
#include <arch/mm/page.h>
#include <genarch/mm/page_pt.h>
#include <genarch/mm/page_ht.h>
#include <mm/asid.h>
#include <arch/mm/asid.h>
#include <preemption.h>
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <adt/list.h>
#include <proc/task.h>
#include <proc/thread.h>
#include <arch/asm.h>
#include <panic.h>
#include <assert.h>
#include <stdio.h>
#include <memw.h>
#include <macros.h>
#include <bitops.h>
#include <arch.h>
#include <errno.h>
#include <config.h>
#include <align.h>
#include <typedefs.h>
#include <syscall/copy.h>
#include <arch/interrupt.h>
#include <interrupt.h>
#include <stdlib.h>

/**
 * Each architecture decides what functions will be used to carry out
 * address space operations such as creating or locking page tables.
 */
const as_operations_t *as_operations = NULL;

/** Cache for as_t objects */
static slab_cache_t *as_cache;

/** Cache for as_page_mapping_t objects */
static slab_cache_t *as_page_mapping_cache;

/** Cache for used_space_ival_t objects */
static slab_cache_t *used_space_ival_cache;

/** ASID subsystem lock.
 *
 * This lock protects:
 * - inactive_as_with_asid_list
 * - as->asid for each as of the as_t type
 * - asids_allocated counter
 *
 */
SPINLOCK_INITIALIZE(asidlock);

/**
 * Inactive address spaces (on all processors)
 * that have valid ASID.
 */
LIST_INITIALIZE(inactive_as_with_asid_list);

/** Kernel address space. */
as_t *AS_KERNEL = NULL;

static void *as_areas_getkey(odlink_t *);
static int as_areas_cmp(void *, void *);

static void used_space_initialize(used_space_t *);
static void used_space_finalize(used_space_t *);
static void *used_space_getkey(odlink_t *);
static int used_space_cmp(void *, void *);
static used_space_ival_t *used_space_last(used_space_t *);
static void used_space_remove_ival(used_space_ival_t *);
static void used_space_shorten_ival(used_space_ival_t *, size_t);

_NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
{
        as_t *as = (as_t *) obj;

        link_initialize(&as->inactive_as_with_asid_link);
        mutex_initialize(&as->lock, MUTEX_PASSIVE);

        return as_constructor_arch(as, flags);
}

_NO_TRACE static size_t as_destructor(void *obj)
{
        return as_destructor_arch((as_t *) obj);
}

/** Initialize address space subsystem. */
void as_init(void)
{
        as_arch_init();

        as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
            as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);

        as_page_mapping_cache = slab_cache_create("as_page_mapping_t",
            sizeof(as_page_mapping_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);

        used_space_ival_cache = slab_cache_create("used_space_ival_t",
            sizeof(used_space_ival_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);

        AS_KERNEL = as_create(FLAG_AS_KERNEL);
        if (!AS_KERNEL)
                panic("Cannot create kernel address space.");
}

/** Create address space.
 *
 * @param flags Flags that influence the way in wich the address
 *              space is created.
 *
 */
as_t *as_create(unsigned int flags)
{
        as_t *as = (as_t *) slab_alloc(as_cache, FRAME_ATOMIC);
        if (!as)
                return NULL;

        (void) as_create_arch(as, 0);

        odict_initialize(&as->as_areas, as_areas_getkey, as_areas_cmp);

        if (flags & FLAG_AS_KERNEL)
                as->asid = ASID_KERNEL;
        else
                as->asid = ASID_INVALID;

        refcount_init(&as->refcount);
        as->cpu_refcount = 0;

#ifdef AS_PAGE_TABLE
        as->genarch.page_table = page_table_create(flags);
#else
        page_table_create(flags);
#endif

        return as;
}

/** Destroy address space.
 *
 * When there are no tasks referencing this address space (i.e. its refcount is
 * zero), the address space can be destroyed.
 *
 * We know that we don't hold any spinlock.
 *
 * @param as Address space to be destroyed.
 *
 */
static void as_destroy(as_t *as)
{
        DEADLOCK_PROBE_INIT(p_asidlock);

        assert(as != AS);
        assert(refcount_unique(&as->refcount));

        /*
         * Since there is no reference to this address space, it is safe not to
         * lock its mutex.
         */

        /*
         * We need to avoid deadlock between TLB shootdown and asidlock.
         * We therefore try to take asid conditionally and if we don't succeed,
         * we enable interrupts and try again. This is done while preemption is
         * disabled to prevent nested context switches. We also depend on the
         * fact that so far no spinlocks are held.
         */
        preemption_disable();
        ipl_t ipl = interrupts_read();

retry:
        interrupts_disable();
        if (!spinlock_trylock(&asidlock)) {
                interrupts_enable();
                DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
                goto retry;
        }

        /* Interrupts disabled, enable preemption */
        preemption_enable();

        if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
                if (as->cpu_refcount == 0)
                        list_remove(&as->inactive_as_with_asid_link);

                asid_put(as->asid);
        }

        spinlock_unlock(&asidlock);
        interrupts_restore(ipl);

        /*
         * Destroy address space areas of the address space.
         * Need to start from the beginning each time since we are destroying
         * the areas.
         */
        as_area_t *area = as_area_first(as);
        while (area != NULL) {
                /*
                 * XXX We already have as_area_t, but as_area_destroy will
                 * have to search for it. This could be made faster.
                 */
                as_area_destroy(as, area->base);
                area = as_area_first(as);
        }

        odict_finalize(&as->as_areas);

#ifdef AS_PAGE_TABLE
        page_table_destroy(as->genarch.page_table);
#else
        page_table_destroy(NULL);
#endif

        slab_free(as_cache, as);
}

/** Hold a reference to an address space.
 *
 * Holding a reference to an address space prevents destruction
 * of that address space.
 *
 * @param as Address space to be held.
 *
 */
_NO_TRACE void as_hold(as_t *as)
{
        refcount_up(&as->refcount);
}

/** Release a reference to an address space.
 *
 * The last one to release a reference to an address space
 * destroys the address space.
 *
 * @param as Address space to be released.
 *
 */
_NO_TRACE void as_release(as_t *as)
{
        if (refcount_down(&as->refcount))
                as_destroy(as);
}

/** Return first address space area.
 *
 * @param as Address space
 * @return First area in @a as (i.e. area with the lowest base address)
 *         or @c NULL if there is none
 */
as_area_t *as_area_first(as_t *as)
{
        odlink_t *odlink = odict_first(&as->as_areas);
        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, as_area_t, las_areas);
}

/** Return next address space area.
 *
 * @param cur Current area
 * @return Next area in the same address space or @c NULL if @a cur is the
 *         last area.
 */
as_area_t *as_area_next(as_area_t *cur)
{
        odlink_t *odlink = odict_next(&cur->las_areas, &cur->as->as_areas);
        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, as_area_t, las_areas);
}

/** Determine if area with specified parameters would conflict with
 * a specific existing address space area.
 *
 * @param addr    Starting virtual address of the area being tested.
 * @param count   Number of pages in the area being tested.
 * @param guarded True if the area being tested is protected by guard pages.
 * @param area    Area against which we are testing.
 *
 * @return True if the two areas conflict, false otherwise.
 */
_NO_TRACE static bool area_is_conflicting(uintptr_t addr,
    size_t count, bool guarded, as_area_t *area)
{
        assert((addr % PAGE_SIZE) == 0);

        size_t gsize = P2SZ(count);
        size_t agsize = P2SZ(area->pages);

        /*
         * A guarded area has one guard page before, one page after.
         * What we do here is: if either area is guarded, we add
         * PAGE_SIZE to the size of both areas. That guarantees
         * they will be spaced at least one page apart.
         */
        if (guarded || (area->flags & AS_AREA_GUARD) != 0) {
                /* Add guard page size unless area is at the end of VA domain */
                if (!overflows(addr, P2SZ(count)))
                        gsize += PAGE_SIZE;

                /* Add guard page size unless area is at the end of VA domain */
                if (!overflows(area->base, P2SZ(area->pages)))
                        agsize += PAGE_SIZE;
        }

        return overlaps(addr, gsize, area->base, agsize);

}

/** Check area conflicts with other areas.
 *
 * @param as      Address space.
 * @param addr    Starting virtual address of the area being tested.
 * @param count   Number of pages in the area being tested.
 * @param guarded True if the area being tested is protected by guard pages.
 * @param avoid   Do not touch this area. I.e. this area is not considered
 *                as presenting a conflict.
 *
 * @return True if there is no conflict, false otherwise.
 *
 */
_NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
    size_t count, bool guarded, as_area_t *avoid)
{
        assert((addr % PAGE_SIZE) == 0);
        assert(mutex_locked(&as->lock));

        /*
         * If the addition of the supposed area address and size overflows,
         * report conflict.
         */
        if (overflows_into_positive(addr, P2SZ(count)))
                return false;

        /*
         * We don't want any area to have conflicts with NULL page.
         */
        if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
                return false;

        /*
         * To determine if we overlap with another area, we just need
         * to look at overlap with the last area with base address <=
         * to ours and on the first area with base address > than ours.
         *
         * First find last area with <= base address.
         */
        odlink_t *odlink = odict_find_leq(&as->as_areas, &addr, NULL);
        if (odlink != NULL) {
                as_area_t *area = odict_get_instance(odlink, as_area_t,
                    las_areas);

                if (area != avoid) {
                        mutex_lock(&area->lock);
                        if (area_is_conflicting(addr, count, guarded, area)) {
                                mutex_unlock(&area->lock);
                                return false;
                        }

                        mutex_unlock(&area->lock);
                }

                /* Next area */
                odlink = odict_next(odlink, &as->as_areas);
        }

        /*
         * Next area, if any, is the first with base > than our base address.
         * If there was no area with <= base, we need to look at the first area.
         */
        if (odlink == NULL)
                odlink = odict_first(&as->as_areas);

        if (odlink != NULL) {
                as_area_t *area = odict_get_instance(odlink, as_area_t,
                    las_areas);

                if (area != avoid) {
                        mutex_lock(&area->lock);
                        if (area_is_conflicting(addr, count, guarded, area)) {
                                mutex_unlock(&area->lock);
                                return false;
                        }

                        mutex_unlock(&area->lock);
                }
        }

        /*
         * So far, the area does not conflict with other areas.
         * Check if it is contained in the user address space.
         */
        if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
                return iswithin(USER_ADDRESS_SPACE_START,
                    (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
                    addr, P2SZ(count));
        }

        return true;
}

/** Return pointer to unmapped address space area
 *
 * The address space must be already locked when calling
 * this function.
 *
 * @param as      Address space.
 * @param bound   Lowest address bound.
 * @param size    Requested size of the allocation.
 * @param guarded True if the allocation must be protected by guard pages.
 *
 * @return Address of the beginning of unmapped address space area.
 * @return -1 if no suitable address space area was found.
 *
 */
_NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
    size_t size, bool guarded)
{
        assert(mutex_locked(&as->lock));

        if (size == 0)
                return (uintptr_t) -1;

        /*
         * Make sure we allocate from page-aligned
         * address. Check for possible overflow in
         * each step.
         */

        size_t pages = SIZE2FRAMES(size);

        /*
         * Find the lowest unmapped address aligned on the size
         * boundary, not smaller than bound and of the required size.
         */

        /* First check the bound address itself */
        uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
        if (addr >= bound) {
                if (guarded) {
                        /*
                         * Leave an unmapped page between the lower
                         * bound and the area's start address.
                         */
                        addr += P2SZ(1);
                }

                if (check_area_conflicts(as, addr, pages, guarded, NULL))
                        return addr;
        }

        /* Eventually check the addresses behind each area */
        as_area_t *area = as_area_first(as);
        while (area != NULL) {
                mutex_lock(&area->lock);

                addr = area->base + P2SZ(area->pages);

                if (guarded || area->flags & AS_AREA_GUARD) {
                        /*
                         * We must leave an unmapped page
                         * between the two areas.
                         */
                        addr += P2SZ(1);
                }

                bool avail =
                    ((addr >= bound) && (addr >= area->base) &&
                    (check_area_conflicts(as, addr, pages, guarded, area)));

                mutex_unlock(&area->lock);

                if (avail)
                        return addr;

                area = as_area_next(area);
        }

        /* No suitable address space area found */
        return (uintptr_t) -1;
}

/** Get key function for pagemap ordered dictionary.
 *
 * The key is the virtual address of the page (as_page_mapping_t.vaddr)
 *
 * @param odlink Link to as_pagemap_t.map ordered dictionary
 * @return Pointer to virtual address cast as @c void *
 */
static void *as_pagemap_getkey(odlink_t *odlink)
{
        as_page_mapping_t *mapping;

        mapping = odict_get_instance(odlink, as_page_mapping_t, lpagemap);
        return (void *) &mapping->vaddr;
}

/** Comparison function for pagemap ordered dictionary.
 *
 * @param a Pointer to virtual address cast as @c void *
 * @param b Pointer to virtual address cast as @c void *
 * @return <0, =0, >0 if virtual address a is less than, equal to, or
 *         greater than b, respectively.
 */
static int as_pagemap_cmp(void *a, void *b)
{
        uintptr_t va = *(uintptr_t *)a;
        uintptr_t vb = *(uintptr_t *)b;

        if (va < vb)
                return -1;
        else if (va == vb)
                return 0;
        else
                return +1;
}

/** Initialize pagemap.
 *
 * @param pagemap Pagemap
 */
_NO_TRACE void as_pagemap_initialize(as_pagemap_t *pagemap)
{
        odict_initialize(&pagemap->map, as_pagemap_getkey, as_pagemap_cmp);
}

/** Finalize pagemap.
 *
 * Destroy any entries in the pagemap.
 *
 * @param pagemap Pagemap
 */
_NO_TRACE void as_pagemap_finalize(as_pagemap_t *pagemap)
{
        as_page_mapping_t *mapping = as_pagemap_first(pagemap);
        while (mapping != NULL) {
                as_pagemap_remove(mapping);
                mapping = as_pagemap_first(pagemap);
        }
        odict_finalize(&pagemap->map);
}

/** Get first page mapping.
 *
 * @param pagemap Pagemap
 * @return First mapping or @c NULL if there is none
 */
_NO_TRACE as_page_mapping_t *as_pagemap_first(as_pagemap_t *pagemap)
{
        odlink_t *odlink;

        odlink = odict_first(&pagemap->map);
        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, as_page_mapping_t, lpagemap);
}

/** Get next page mapping.
 *
 * @param cur Current mapping
 * @return Next mapping or @c NULL if @a cur is the last one
 */
_NO_TRACE as_page_mapping_t *as_pagemap_next(as_page_mapping_t *cur)
{
        odlink_t *odlink;

        odlink = odict_next(&cur->lpagemap, &cur->pagemap->map);
        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, as_page_mapping_t, lpagemap);
}

/** Find frame by virtual address.
 *
 * @param pagemap Pagemap
 * @param vaddr Virtual address of page
 * @param rframe Place to store physical frame address
 * @return EOK on succcess or ENOENT if no mapping found
 */
_NO_TRACE errno_t as_pagemap_find(as_pagemap_t *pagemap, uintptr_t vaddr,
    uintptr_t *rframe)
{
        odlink_t *odlink;
        as_page_mapping_t *mapping;

        odlink = odict_find_eq(&pagemap->map, &vaddr, NULL);
        if (odlink == NULL)
                return ENOENT;

        mapping = odict_get_instance(odlink, as_page_mapping_t, lpagemap);
        *rframe = mapping->frame;
        return EOK;
}

/** Insert new page mapping.
 *
 * This function can block to allocate kernel memory.
 *
 * @param pagemap Pagemap
 * @param vaddr Virtual page address
 * @param frame Physical frame address
 */
_NO_TRACE void as_pagemap_insert(as_pagemap_t *pagemap, uintptr_t vaddr,
    uintptr_t frame)
{
        as_page_mapping_t *mapping;

        mapping = slab_alloc(as_page_mapping_cache, 0);
        mapping->pagemap = pagemap;
        odlink_initialize(&mapping->lpagemap);
        mapping->vaddr = vaddr;
        mapping->frame = frame;
        odict_insert(&mapping->lpagemap, &pagemap->map, NULL);
}

/** Remove page mapping.
 *
 * @param mapping Mapping
 */
_NO_TRACE void as_pagemap_remove(as_page_mapping_t *mapping)
{
        odict_remove(&mapping->lpagemap);
        slab_free(as_page_mapping_cache, mapping);
}

/** Remove reference to address space area share info.
 *
 * If the reference count drops to 0, the sh_info is deallocated.
 *
 * @param sh_info Pointer to address space area share info.
 *
 */
_NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
{
        bool dealloc = false;

        mutex_lock(&sh_info->lock);
        assert(sh_info->refcount);

        if (--sh_info->refcount == 0) {
                dealloc = true;

                as_page_mapping_t *mapping = as_pagemap_first(&sh_info->pagemap);
                while (mapping != NULL) {
                        frame_free(mapping->frame, 1);
                        mapping = as_pagemap_next(mapping);
                }

        }
        mutex_unlock(&sh_info->lock);

        if (dealloc) {
                if (sh_info->backend && sh_info->backend->destroy_shared_data) {
                        sh_info->backend->destroy_shared_data(
                            sh_info->backend_shared_data);
                }
                as_pagemap_finalize(&sh_info->pagemap);
                free(sh_info);
        }
}

/** Create address space area of common attributes.
 *
 * The created address space area is added to the target address space.
 *
 * @param as           Target address space.
 * @param flags        Flags of the area memory.
 * @param size         Size of area.
 * @param attrs        Attributes of the area.
 * @param backend      Address space area backend. NULL if no backend is used.
 * @param backend_data NULL or a pointer to custom backend data.
 * @param base         Starting virtual address of the area.
 *                     If set to AS_AREA_ANY, a suitable mappable area is
 *                     found.
 * @param bound        Lowest address bound if base is set to AS_AREA_ANY.
 *                     Otherwise ignored.
 *
 * @return Address space area on success or NULL on failure.
 *
 */
as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
    unsigned int attrs, mem_backend_t *backend,
    mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
{
        if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
                return NULL;

        if (size == 0)
                return NULL;

        size_t pages = SIZE2FRAMES(size);

        /* Writeable executable areas are not supported. */
        if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
                return NULL;

        bool const guarded = flags & AS_AREA_GUARD;

        mutex_lock(&as->lock);

        if (*base == (uintptr_t) AS_AREA_ANY) {
                *base = as_get_unmapped_area(as, bound, size, guarded);
                if (*base == (uintptr_t) -1) {
                        mutex_unlock(&as->lock);
                        return NULL;
                }
        }

        if (overflows_into_positive(*base, size)) {
                mutex_unlock(&as->lock);
                return NULL;
        }

        if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
                mutex_unlock(&as->lock);
                return NULL;
        }

        as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
        if (!area) {
                mutex_unlock(&as->lock);
                return NULL;
        }

        mutex_initialize(&area->lock, MUTEX_PASSIVE);

        area->as = as;
        odlink_initialize(&area->las_areas);
        area->flags = flags;
        area->attributes = attrs;
        area->pages = pages;
        area->base = *base;
        area->backend = backend;
        area->sh_info = NULL;

        if (backend_data)
                area->backend_data = *backend_data;
        else
                memsetb(&area->backend_data, sizeof(area->backend_data), 0);

        share_info_t *si = NULL;

        /*
         * Create the sharing info structure.
         * We do this in advance for every new area, even if it is not going
         * to be shared.
         */
        if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
                si = (share_info_t *) malloc(sizeof(share_info_t));
                if (!si) {
                        free(area);
                        mutex_unlock(&as->lock);
                        return NULL;
                }
                mutex_initialize(&si->lock, MUTEX_PASSIVE);
                si->refcount = 1;
                si->shared = false;
                si->backend_shared_data = NULL;
                si->backend = backend;
                as_pagemap_initialize(&si->pagemap);

                area->sh_info = si;

                if (area->backend && area->backend->create_shared_data) {
                        if (!area->backend->create_shared_data(area)) {
                                free(area);
                                mutex_unlock(&as->lock);
                                sh_info_remove_reference(si);
                                return NULL;
                        }
                }
        }

        if (area->backend && area->backend->create) {
                if (!area->backend->create(area)) {
                        free(area);
                        mutex_unlock(&as->lock);
                        if (!(attrs & AS_AREA_ATTR_PARTIAL))
                                sh_info_remove_reference(si);
                        return NULL;
                }
        }

        used_space_initialize(&area->used_space);
        odict_insert(&area->las_areas, &as->as_areas, NULL);

        mutex_unlock(&as->lock);

        return area;
}

/** Find address space area and lock it.
 *
 * @param as Address space.
 * @param va Virtual address.
 *
 * @return Locked address space area containing va on success or
 *         NULL on failure.
 *
 */
_NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
{
        assert(mutex_locked(&as->lock));

        odlink_t *odlink = odict_find_leq(&as->as_areas, &va, NULL);
        if (odlink == NULL)
                return NULL;

        as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
        mutex_lock(&area->lock);

        assert(area->base <= va);

        if (va <= area->base + (P2SZ(area->pages) - 1))
                return area;

        mutex_unlock(&area->lock);
        return NULL;
}

/** Find address space area and change it.
 *
 * @param as      Address space.
 * @param address Virtual address belonging to the area to be changed.
 *                Must be page-aligned.
 * @param size    New size of the virtual memory block starting at
 *                address.
 * @param flags   Flags influencing the remap operation. Currently unused.
 *
 * @return Zero on success or a value from @ref errno.h otherwise.
 *
 */
errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
{
        if (!IS_ALIGNED(address, PAGE_SIZE))
                return EINVAL;

        mutex_lock(&as->lock);

        /*
         * Locate the area.
         */
        as_area_t *area = find_area_and_lock(as, address);
        if (!area) {
                mutex_unlock(&as->lock);
                return ENOENT;
        }

        if (!area->backend->is_resizable(area)) {
                /*
                 * The backend does not support resizing for this area.
                 */
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return ENOTSUP;
        }

        mutex_lock(&area->sh_info->lock);
        if (area->sh_info->shared) {
                /*
                 * Remapping of shared address space areas
                 * is not supported.
                 */
                mutex_unlock(&area->sh_info->lock);
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return ENOTSUP;
        }
        mutex_unlock(&area->sh_info->lock);

        size_t pages = SIZE2FRAMES((address - area->base) + size);
        if (!pages) {
                /*
                 * Zero size address space areas are not allowed.
                 */
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return EPERM;
        }

        if (pages < area->pages) {
                uintptr_t start_free = area->base + P2SZ(pages);

                /*
                 * Shrinking the area.
                 * No need to check for overlaps.
                 */

                page_table_lock(as, false);

                /*
                 * Start TLB shootdown sequence.
                 */

                ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
                    as->asid, area->base + P2SZ(pages),
                    area->pages - pages);

                /*
                 * Remove frames belonging to used space starting from
                 * the highest addresses downwards until an overlap with
                 * the resized address space area is found.
                 */
                bool cond = true;
                while (cond) {
                        used_space_ival_t *ival =
                            used_space_last(&area->used_space);
                        assert(ival != NULL);

                        uintptr_t ptr = ival->page;
                        size_t pcount = ival->count;
                        size_t i = 0;

                        if (overlaps(ptr, P2SZ(pcount), area->base,
                            P2SZ(pages))) {

                                if (ptr + P2SZ(pcount) <= start_free) {
                                        /*
                                         * The whole interval fits completely
                                         * in the resized address space area.
                                         */
                                        break;
                                }

                                /*
                                 * Part of the interval corresponding to b and
                                 * c overlaps with the resized address space
                                 * area.
                                 */

                                /* We are almost done */
                                cond = false;
                                i = (start_free - ptr) >> PAGE_WIDTH;

                                /* Shorten the interval to @c i pages */
                                used_space_shorten_ival(ival, i);
                        } else {
                                /*
                                 * The interval of used space can be completely
                                 * removed.
                                 */
                                used_space_remove_ival(ival);
                        }

                        for (; i < pcount; i++) {
                                pte_t pte;
                                bool found = page_mapping_find(as,
                                    ptr + P2SZ(i), false, &pte);

                                (void) found;
                                assert(found);
                                assert(PTE_VALID(&pte));
                                assert(PTE_PRESENT(&pte));

                                if ((area->backend) &&
                                    (area->backend->frame_free)) {
                                        area->backend->frame_free(area,
                                            ptr + P2SZ(i),
                                            PTE_GET_FRAME(&pte));
                                }

                                page_mapping_remove(as, ptr + P2SZ(i));
                        }

                }

                /*
                 * Finish TLB shootdown sequence.
                 */

                tlb_invalidate_pages(as->asid,
                    area->base + P2SZ(pages),
                    area->pages - pages);

                /*
                 * Invalidate software translation caches
                 * (e.g. TSB on sparc64, PHT on ppc32).
                 */
                as_invalidate_translation_cache(as,
                    area->base + P2SZ(pages),
                    area->pages - pages);
                tlb_shootdown_finalize(ipl);

                page_table_unlock(as, false);
        } else {
                /*
                 * Growing the area.
                 */

                if (overflows_into_positive(address, P2SZ(pages)))
                        return EINVAL;

                /*
                 * Check for overlaps with other address space areas.
                 */
                bool const guarded = area->flags & AS_AREA_GUARD;
                if (!check_area_conflicts(as, address, pages, guarded, area)) {
                        mutex_unlock(&area->lock);
                        mutex_unlock(&as->lock);
                        return EADDRNOTAVAIL;
                }
        }

        if (area->backend && area->backend->resize) {
                if (!area->backend->resize(area, pages)) {
                        mutex_unlock(&area->lock);
                        mutex_unlock(&as->lock);
                        return ENOMEM;
                }
        }

        area->pages = pages;

        mutex_unlock(&area->lock);
        mutex_unlock(&as->lock);

        return 0;
}

/** Destroy address space area.
 *
 * @param as      Address space.
 * @param address Address within the area to be deleted.
 *
 * @return Zero on success or a value from @ref errno.h on failure.
 *
 */
errno_t as_area_destroy(as_t *as, uintptr_t address)
{
        mutex_lock(&as->lock);

        as_area_t *area = find_area_and_lock(as, address);
        if (!area) {
                mutex_unlock(&as->lock);
                return ENOENT;
        }

        if (area->backend && area->backend->destroy)
                area->backend->destroy(area);

        page_table_lock(as, false);
        /*
         * Start TLB shootdown sequence.
         */
        ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
            area->pages);

        /*
         * Visit only the pages mapped by used_space.
         */
        used_space_ival_t *ival = used_space_first(&area->used_space);
        while (ival != NULL) {
                uintptr_t ptr = ival->page;

                for (size_t size = 0; size < ival->count; size++) {
                        pte_t pte;
                        bool found = page_mapping_find(as,
                            ptr + P2SZ(size), false, &pte);

                        (void) found;
                        assert(found);
                        assert(PTE_VALID(&pte));
                        assert(PTE_PRESENT(&pte));

                        if ((area->backend) &&
                            (area->backend->frame_free)) {
                                area->backend->frame_free(area,
                                    ptr + P2SZ(size),
                                    PTE_GET_FRAME(&pte));
                        }

                        page_mapping_remove(as, ptr + P2SZ(size));
                }

                used_space_remove_ival(ival);
                ival = used_space_first(&area->used_space);
        }

        /*
         * Finish TLB shootdown sequence.
         */

        tlb_invalidate_pages(as->asid, area->base, area->pages);

        /*
         * Invalidate potential software translation caches
         * (e.g. TSB on sparc64, PHT on ppc32).
         */
        as_invalidate_translation_cache(as, area->base, area->pages);
        tlb_shootdown_finalize(ipl);

        page_table_unlock(as, false);

        used_space_finalize(&area->used_space);
        area->attributes |= AS_AREA_ATTR_PARTIAL;
        sh_info_remove_reference(area->sh_info);

        mutex_unlock(&area->lock);

        /*
         * Remove the empty area from address space.
         */
        odict_remove(&area->las_areas);

        free(area);

        mutex_unlock(&as->lock);
        return 0;
}

/** Share address space area with another or the same address space.
 *
 * Address space area mapping is shared with a new address space area.
 * If the source address space area has not been shared so far,
 * a new sh_info is created. The new address space area simply gets the
 * sh_info of the source area. The process of duplicating the
 * mapping is done through the backend share function.
 *
 * @param src_as         Pointer to source address space.
 * @param src_base       Base address of the source address space area.
 * @param acc_size       Expected size of the source area.
 * @param dst_as         Pointer to destination address space.
 * @param dst_flags_mask Destination address space area flags mask.
 * @param dst_base       Target base address. If set to -1,
 *                       a suitable mappable area is found.
 * @param bound          Lowest address bound if dst_base is set to -1.
 *                       Otherwise ignored.
 *
 * @return Zero on success.
 * @return ENOENT if there is no such task or such address space.
 * @return EPERM if there was a problem in accepting the area.
 * @return ENOMEM if there was a problem in allocating destination
 *         address space area.
 * @return ENOTSUP if the address space area backend does not support
 *         sharing.
 *
 */
errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
    as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
    uintptr_t bound)
{
        mutex_lock(&src_as->lock);
        as_area_t *src_area = find_area_and_lock(src_as, src_base);
        if (!src_area) {
                /*
                 * Could not find the source address space area.
                 */
                mutex_unlock(&src_as->lock);
                return ENOENT;
        }

        if (!src_area->backend->is_shareable(src_area)) {
                /*
                 * The backend does not permit sharing of this area.
                 */
                mutex_unlock(&src_area->lock);
                mutex_unlock(&src_as->lock);
                return ENOTSUP;
        }

        size_t src_size = P2SZ(src_area->pages);
        unsigned int src_flags = src_area->flags;
        mem_backend_t *src_backend = src_area->backend;
        mem_backend_data_t src_backend_data = src_area->backend_data;

        /* Share the cacheable flag from the original mapping */
        if (src_flags & AS_AREA_CACHEABLE)
                dst_flags_mask |= AS_AREA_CACHEABLE;

        if ((src_size != acc_size) ||
            ((src_flags & dst_flags_mask) != dst_flags_mask)) {
                mutex_unlock(&src_area->lock);
                mutex_unlock(&src_as->lock);
                return EPERM;
        }

        /*
         * Now we are committed to sharing the area.
         * First, prepare the area for sharing.
         * Then it will be safe to unlock it.
         */
        share_info_t *sh_info = src_area->sh_info;

        mutex_lock(&sh_info->lock);
        sh_info->refcount++;
        bool shared = sh_info->shared;
        sh_info->shared = true;
        mutex_unlock(&sh_info->lock);

        if (!shared) {
                /*
                 * Call the backend to setup sharing.
                 * This only happens once for each sh_info.
                 */
                src_area->backend->share(src_area);
        }

        mutex_unlock(&src_area->lock);
        mutex_unlock(&src_as->lock);

        /*
         * Create copy of the source address space area.
         * The destination area is created with AS_AREA_ATTR_PARTIAL
         * attribute set which prevents race condition with
         * preliminary as_page_fault() calls.
         * The flags of the source area are masked against dst_flags_mask
         * to support sharing in less privileged mode.
         */
        as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
            src_size, AS_AREA_ATTR_PARTIAL, src_backend,
            &src_backend_data, dst_base, bound);
        if (!dst_area) {
                /*
                 * Destination address space area could not be created.
                 */
                sh_info_remove_reference(sh_info);

                return ENOMEM;
        }

        /*
         * Now the destination address space area has been
         * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
         * attribute and set the sh_info.
         */
        mutex_lock(&dst_as->lock);
        mutex_lock(&dst_area->lock);
        dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
        dst_area->sh_info = sh_info;
        mutex_unlock(&dst_area->lock);
        mutex_unlock(&dst_as->lock);

        return 0;
}

/** Check access mode for address space area.
 *
 * @param area   Address space area.
 * @param access Access mode.
 *
 * @return False if access violates area's permissions, true
 *         otherwise.
 *
 */
_NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
{
        assert(mutex_locked(&area->lock));

        int flagmap[] = {
                [PF_ACCESS_READ] = AS_AREA_READ,
                [PF_ACCESS_WRITE] = AS_AREA_WRITE,
                [PF_ACCESS_EXEC] = AS_AREA_EXEC
        };

        if (!(area->flags & flagmap[access]))
                return false;

        return true;
}

/** Convert address space area flags to page flags.
 *
 * @param aflags Flags of some address space area.
 *
 * @return Flags to be passed to page_mapping_insert().
 *
 */
_NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
{
        unsigned int flags = PAGE_USER | PAGE_PRESENT;

        if (aflags & AS_AREA_READ)
                flags |= PAGE_READ;

        if (aflags & AS_AREA_WRITE)
                flags |= PAGE_WRITE;

        if (aflags & AS_AREA_EXEC)
                flags |= PAGE_EXEC;

        if (aflags & AS_AREA_CACHEABLE)
                flags |= PAGE_CACHEABLE;

        return flags;
}

/** Change address space area flags.
 *
 * The idea is to have the same data, but with a different access mode.
 * This is needed e.g. for writing code into memory and then executing it.
 * In order for this to work properly, this may copy the data
 * into private anonymous memory (unless it's already there).
 *
 * @param as      Address space.
 * @param flags   Flags of the area memory.
 * @param address Address within the area to be changed.
 *
 * @return Zero on success or a value from @ref errno.h on failure.
 *
 */
errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
{
        /* Flags for the new memory mapping */
        unsigned int page_flags = area_flags_to_page_flags(flags);

        mutex_lock(&as->lock);

        as_area_t *area = find_area_and_lock(as, address);
        if (!area) {
                mutex_unlock(&as->lock);
                return ENOENT;
        }

        if (area->backend != &anon_backend) {
                /* Copying non-anonymous memory not supported yet */
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return ENOTSUP;
        }

        mutex_lock(&area->sh_info->lock);
        if (area->sh_info->shared) {
                /* Copying shared areas not supported yet */
                mutex_unlock(&area->sh_info->lock);
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return ENOTSUP;
        }
        mutex_unlock(&area->sh_info->lock);

        /* An array for storing frame numbers */
        uintptr_t *old_frame = malloc(area->used_space.pages *
            sizeof(uintptr_t));
        if (!old_frame) {
                mutex_unlock(&area->lock);
                mutex_unlock(&as->lock);
                return ENOMEM;
        }

        page_table_lock(as, false);

        /*
         * Start TLB shootdown sequence.
         */
        ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
            area->pages);

        /*
         * Remove used pages from page tables and remember their frame
         * numbers.
         */
        size_t frame_idx = 0;

        used_space_ival_t *ival = used_space_first(&area->used_space);
        while (ival != NULL) {
                uintptr_t ptr = ival->page;
                size_t size;

                for (size = 0; size < ival->count; size++) {
                        pte_t pte;
                        bool found = page_mapping_find(as, ptr + P2SZ(size),
                            false, &pte);

                        (void) found;
                        assert(found);
                        assert(PTE_VALID(&pte));
                        assert(PTE_PRESENT(&pte));

                        old_frame[frame_idx++] = PTE_GET_FRAME(&pte);

                        /* Remove old mapping */
                        page_mapping_remove(as, ptr + P2SZ(size));
                }

                ival = used_space_next(ival);
        }

        /*
         * Finish TLB shootdown sequence.
         */

        tlb_invalidate_pages(as->asid, area->base, area->pages);

        /*
         * Invalidate potential software translation caches
         * (e.g. TSB on sparc64, PHT on ppc32).
         */
        as_invalidate_translation_cache(as, area->base, area->pages);
        tlb_shootdown_finalize(ipl);

        page_table_unlock(as, false);

        /*
         * Set the new flags.
         */
        area->flags = flags;

        /*
         * Map pages back in with new flags. This step is kept separate
         * so that the memory area could not be accesed with both the old and
         * the new flags at once.
         */
        frame_idx = 0;

        ival = used_space_first(&area->used_space);
        while (ival != NULL) {
                uintptr_t ptr = ival->page;
                size_t size;

                for (size = 0; size < ival->count; size++) {
                        page_table_lock(as, false);

                        /* Insert the new mapping */
                        page_mapping_insert(as, ptr + P2SZ(size),
                            old_frame[frame_idx++], page_flags);

                        page_table_unlock(as, false);
                }

                ival = used_space_next(ival);
        }

        free(old_frame);

        mutex_unlock(&area->lock);
        mutex_unlock(&as->lock);

        return 0;
}

/** Handle page fault within the current address space.
 *
 * This is the high-level page fault handler. It decides whether the page fault
 * can be resolved by any backend and if so, it invokes the backend to resolve
 * the page fault.
 *
 * Interrupts are assumed disabled.
 *
 * @param address Faulting address.
 * @param access  Access mode that caused the page fault (i.e.
 *                read/write/exec).
 * @param istate  Pointer to the interrupted state.
 *
 * @return AS_PF_FAULT on page fault.
 * @return AS_PF_OK on success.
 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
 *         or copy_from_uspace().
 *
 */
int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
{
        uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
        int rc = AS_PF_FAULT;

        if (!THREAD)
                goto page_fault;

        if (!AS)
                goto page_fault;

        mutex_lock(&AS->lock);
        as_area_t *area = find_area_and_lock(AS, page);
        if (!area) {
                /*
                 * No area contained mapping for 'page'.
                 * Signal page fault to low-level handler.
                 */
                mutex_unlock(&AS->lock);
                goto page_fault;
        }

        if (area->attributes & AS_AREA_ATTR_PARTIAL) {
                /*
                 * The address space area is not fully initialized.
                 * Avoid possible race by returning error.
                 */
                mutex_unlock(&area->lock);
                mutex_unlock(&AS->lock);
                goto page_fault;
        }

        if ((!area->backend) || (!area->backend->page_fault)) {
                /*
                 * The address space area is not backed by any backend
                 * or the backend cannot handle page faults.
                 */
                mutex_unlock(&area->lock);
                mutex_unlock(&AS->lock);
                goto page_fault;
        }

        page_table_lock(AS, false);

        /*
         * To avoid race condition between two page faults on the same address,
         * we need to make sure the mapping has not been already inserted.
         */
        pte_t pte;
        bool found = page_mapping_find(AS, page, false, &pte);
        if (found && PTE_PRESENT(&pte)) {
                if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
                    (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
                    (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
                        page_table_unlock(AS, false);
                        mutex_unlock(&area->lock);
                        mutex_unlock(&AS->lock);
                        return AS_PF_OK;
                }
        }

        /*
         * Resort to the backend page fault handler.
         */
        rc = area->backend->page_fault(area, page, access);
        if (rc != AS_PF_OK) {
                page_table_unlock(AS, false);
                mutex_unlock(&area->lock);
                mutex_unlock(&AS->lock);
                goto page_fault;
        }

        page_table_unlock(AS, false);
        mutex_unlock(&area->lock);
        mutex_unlock(&AS->lock);
        return AS_PF_OK;

page_fault:
        if (THREAD && THREAD->in_copy_from_uspace) {
                THREAD->in_copy_from_uspace = false;
                istate_set_retaddr(istate,
                    (uintptr_t) &memcpy_from_uspace_failover_address);
        } else if (THREAD && THREAD->in_copy_to_uspace) {
                THREAD->in_copy_to_uspace = false;
                istate_set_retaddr(istate,
                    (uintptr_t) &memcpy_to_uspace_failover_address);
        } else if (rc == AS_PF_SILENT) {
                printf("Killing task %" PRIu64 " due to a "
                    "failed late reservation request.\n", TASK->taskid);
                task_kill_self(true);
        } else {
                fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
                panic_memtrap(istate, access, address, NULL);
        }

        return AS_PF_DEFER;
}

/** Switch address spaces.
 *
 * Note that this function cannot sleep as it is essentially a part of
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
 * thing which is forbidden in this context is locking the address space.
 *
 * When this function is entered, no spinlocks may be held.
 *
 * @param old Old address space or NULL.
 * @param new New address space.
 *
 */
void as_switch(as_t *old_as, as_t *new_as)
{
        DEADLOCK_PROBE_INIT(p_asidlock);
        preemption_disable();

retry:
        (void) interrupts_disable();
        if (!spinlock_trylock(&asidlock)) {
                /*
                 * Avoid deadlock with TLB shootdown.
                 * We can enable interrupts here because
                 * preemption is disabled. We should not be
                 * holding any other lock.
                 */
                (void) interrupts_enable();
                DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
                goto retry;
        }
        preemption_enable();

        /*
         * First, take care of the old address space.
         */
        if (old_as) {
                assert(old_as->cpu_refcount);

                if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
                        /*
                         * The old address space is no longer active on
                         * any processor. It can be appended to the
                         * list of inactive address spaces with assigned
                         * ASID.
                         */
                        assert(old_as->asid != ASID_INVALID);

                        list_append(&old_as->inactive_as_with_asid_link,
                            &inactive_as_with_asid_list);
                }

                /*
                 * Perform architecture-specific tasks when the address space
                 * is being removed from the CPU.
                 */
                as_deinstall_arch(old_as);
        }

        /*
         * Second, prepare the new address space.
         */
        if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
                if (new_as->asid != ASID_INVALID)
                        list_remove(&new_as->inactive_as_with_asid_link);
                else
                        new_as->asid = asid_get();
        }

#ifdef AS_PAGE_TABLE
        SET_PTL0_ADDRESS(new_as->genarch.page_table);
#endif

        /*
         * Perform architecture-specific steps.
         * (e.g. write ASID to hardware register etc.)
         */
        as_install_arch(new_as);

        spinlock_unlock(&asidlock);

        if (AS)
                as_release(AS);

        AS = new_as;

        as_hold(AS);
}

/** Compute flags for virtual address translation subsytem.
 *
 * @param area Address space area.
 *
 * @return Flags to be used in page_mapping_insert().
 *
 */
_NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
{
        assert(mutex_locked(&area->lock));

        return area_flags_to_page_flags(area->flags);
}

/** Get key function for the @c as_t.as_areas ordered dictionary.
 *
 * @param odlink Link
 * @return Pointer to task ID cast as 'void *'
 */
static void *as_areas_getkey(odlink_t *odlink)
{
        as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
        return (void *) &area->base;
}

/** Key comparison function for the @c as_t.as_areas ordered dictionary.
 *
 * @param a Pointer to area A base
 * @param b Pointer to area B base
 * @return -1, 0, 1 iff base of A is lower than, equal to, higher than B
 */
static int as_areas_cmp(void *a, void *b)
{
        uintptr_t base_a = *(uintptr_t *)a;
        uintptr_t base_b = *(uintptr_t *)b;

        if (base_a < base_b)
                return -1;
        else if (base_a == base_b)
                return 0;
        else
                return +1;
}

/** Create page table.
 *
 * Depending on architecture, create either address space private or global page
 * table.
 *
 * @param flags Flags saying whether the page table is for the kernel
 *              address space.
 *
 * @return First entry of the page table.
 *
 */
_NO_TRACE pte_t *page_table_create(unsigned int flags)
{
        assert(as_operations);
        assert(as_operations->page_table_create);

        return as_operations->page_table_create(flags);
}

/** Destroy page table.
 *
 * Destroy page table in architecture specific way.
 *
 * @param page_table Physical address of PTL0.
 *
 */
_NO_TRACE void page_table_destroy(pte_t *page_table)
{
        assert(as_operations);
        assert(as_operations->page_table_destroy);

        as_operations->page_table_destroy(page_table);
}

/** Lock page table.
 *
 * This function should be called before any page_mapping_insert(),
 * page_mapping_remove() and page_mapping_find().
 *
 * Locking order is such that address space areas must be locked
 * prior to this call. Address space can be locked prior to this
 * call in which case the lock argument is false.
 *
 * @param as   Address space.
 * @param lock If false, do not attempt to lock as->lock.
 *
 */
_NO_TRACE void page_table_lock(as_t *as, bool lock)
{
        assert(as_operations);
        assert(as_operations->page_table_lock);

        as_operations->page_table_lock(as, lock);
}

/** Unlock page table.
 *
 * @param as     Address space.
 * @param unlock If false, do not attempt to unlock as->lock.
 *
 */
_NO_TRACE void page_table_unlock(as_t *as, bool unlock)
{
        assert(as_operations);
        assert(as_operations->page_table_unlock);

        as_operations->page_table_unlock(as, unlock);
}

/** Test whether page tables are locked.
 *
 * @param as Address space where the page tables belong.
 *
 * @return True if the page tables belonging to the address soace
 *         are locked, otherwise false.
 */
_NO_TRACE bool page_table_locked(as_t *as)
{
        assert(as_operations);
        assert(as_operations->page_table_locked);

        return as_operations->page_table_locked(as);
}

/** Return size of the address space area with given base.
 *
 * @param base Arbitrary address inside the address space area.
 *
 * @return Size of the address space area in bytes or zero if it
 *         does not exist.
 *
 */
size_t as_area_get_size(uintptr_t base)
{
        size_t size;

        page_table_lock(AS, true);
        as_area_t *src_area = find_area_and_lock(AS, base);

        if (src_area) {
                size = P2SZ(src_area->pages);
                mutex_unlock(&src_area->lock);
        } else
                size = 0;

        page_table_unlock(AS, true);
        return size;
}

/** Initialize used space map.
 *
 * @param used_space Used space map
 */
static void used_space_initialize(used_space_t *used_space)
{
        odict_initialize(&used_space->ivals, used_space_getkey, used_space_cmp);
        used_space->pages = 0;
}

/** Finalize used space map.
 *
 * @param used_space Used space map
 */
static void used_space_finalize(used_space_t *used_space)
{
        assert(odict_empty(&used_space->ivals));
        odict_finalize(&used_space->ivals);
}

/** Get first interval of used space.
 *
 * @param used_space Used space map
 * @return First interval or @c NULL if there are none
 */
used_space_ival_t *used_space_first(used_space_t *used_space)
{
        odlink_t *odlink = odict_first(&used_space->ivals);

        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, used_space_ival_t, lused_space);
}

/** Get next interval of used space.
 *
 * @param cur Current interval
 * @return Next interval or @c NULL if there are none
 */
used_space_ival_t *used_space_next(used_space_ival_t *cur)
{
        odlink_t *odlink = odict_next(&cur->lused_space,
            &cur->used_space->ivals);

        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, used_space_ival_t, lused_space);
}

/** Get last interval of used space.
 *
 * @param used_space Used space map
 * @return First interval or @c NULL if there are none
 */
static used_space_ival_t *used_space_last(used_space_t *used_space)
{
        odlink_t *odlink = odict_last(&used_space->ivals);

        if (odlink == NULL)
                return NULL;

        return odict_get_instance(odlink, used_space_ival_t, lused_space);
}

/** Find the first interval that contains addresses greater than or equal to
 * @a ptr.
 *
 * @param used_space Used space map
 * @param ptr Virtual address
 *
 * @return Used space interval or @c NULL if none matches
 */
used_space_ival_t *used_space_find_gteq(used_space_t *used_space, uintptr_t ptr)
{
        odlink_t *odlink;
        used_space_ival_t *ival;

        /* Find last interval to start at address less than @a ptr */
        odlink = odict_find_lt(&used_space->ivals, &ptr, NULL);
        if (odlink != NULL) {
                ival = odict_get_instance(odlink, used_space_ival_t,
                    lused_space);

                /* If the interval extends above @a ptr, return it */
                if (ival->page + P2SZ(ival->count) > ptr)
                        return ival;

                /*
                 * Otherwise, if a next interval exists, it must match
                 * the criteria.
                 */
                odlink = odict_next(&ival->lused_space, &used_space->ivals);
        } else {
                /*
                 * No interval with lower base address, so if there is any
                 * interval at all, it must match the criteria
                 */
                odlink = odict_first(&used_space->ivals);
        }

        if (odlink != NULL) {
                ival = odict_get_instance(odlink, used_space_ival_t,
                    lused_space);
                return ival;
        }

        return NULL;
}

/** Get key function for used space ordered dictionary.
 *
 * The key is the virtual address of the first page
 *
 * @param odlink Ordered dictionary link (used_space_ival_t.lused_space)
 * @return Pointer to virtual address of first page cast as @c void *.
 */
static void *used_space_getkey(odlink_t *odlink)
{
        used_space_ival_t *ival = odict_get_instance(odlink, used_space_ival_t,
            lused_space);
        return (void *) &ival->page;
}

/** Compare function for used space ordered dictionary.
 *
 * @param a Pointer to virtual address of first page cast as @c void *
 * @param b Pointer to virtual address of first page cast as @c void *
 * @return Less than zero, zero, greater than zero if virtual address @a a
 *         is less than, equal to, greater than virtual address b, respectively.
 */
static int used_space_cmp(void *a, void *b)
{
        uintptr_t va = *(uintptr_t *) a;
        uintptr_t vb = *(uintptr_t *) b;

        if (va < vb)
                return -1;
        else if (va == vb)
                return 0;
        else
                return +1;
}

/** Remove used space interval.
 *
 * @param ival Used space interval
 */
static void used_space_remove_ival(used_space_ival_t *ival)
{
        ival->used_space->pages -= ival->count;
        odict_remove(&ival->lused_space);
        slab_free(used_space_ival_cache, ival);
}

/** Shorten used space interval.
 *
 * @param ival Used space interval
 * @param count New number of pages in the interval
 */
static void used_space_shorten_ival(used_space_ival_t *ival, size_t count)
{
        assert(count > 0);
        assert(count < ival->count);

        ival->used_space->pages -= ival->count - count;
        ival->count = count;
}

/** Mark portion of address space area as used.
 *
 * The address space area must be already locked.
 *
 * @param used_space Used space map
 * @param page First page to be marked.
 * @param count Number of page to be marked.
 *
 * @return False on failure or true on success.
 *
 */
bool used_space_insert(used_space_t *used_space, uintptr_t page, size_t count)
{
        used_space_ival_t *a;
        used_space_ival_t *b;
        bool adj_a;
        bool adj_b;
        odlink_t *odlink;
        used_space_ival_t *ival;

        assert(IS_ALIGNED(page, PAGE_SIZE));
        assert(count);

        /* Interval to the left */
        odlink = odict_find_lt(&used_space->ivals, &page, NULL);
        a = (odlink != NULL) ?
            odict_get_instance(odlink, used_space_ival_t, lused_space) :
            NULL;

        /* Interval to the right */
        b = (a != NULL) ? used_space_next(a) :
            used_space_first(used_space);

        /* Check for conflict with left interval */
        if (a != NULL && overlaps(a->page, P2SZ(a->count), page, P2SZ(count)))
                return false;

        /* Check for conflict with right interval */
        if (b != NULL && overlaps(page, P2SZ(count), b->page, P2SZ(b->count)))
                return false;

        /* Check if A is adjacent to the new interval */
        adj_a = (a != NULL) && (a->page + P2SZ(a->count) == page);
        /* Check if the new interval is adjacent to B */
        adj_b = (b != NULL) && page + P2SZ(count) == b->page;

        if (adj_a && adj_b) {
                /* Fuse into a single interval */
                a->count += count + b->count;
                used_space_remove_ival(b);
        } else if (adj_a) {
                /* Append to A */
                a->count += count;
        } else if (adj_b) {
                /* Prepend to B */
                b->page = page;
                b->count += count;
        } else {
                /* Create new interval */
                ival = slab_alloc(used_space_ival_cache, 0);
                ival->used_space = used_space;
                odlink_initialize(&ival->lused_space);
                ival->page = page;
                ival->count = count;

                odict_insert(&ival->lused_space, &used_space->ivals,
                    NULL);
        }

        used_space->pages += count;
        return true;
}

/*
 * Address space related syscalls.
 */

sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
    uintptr_t bound, uspace_ptr_as_area_pager_info_t pager_info)
{
        uintptr_t virt = base;
        mem_backend_t *backend;
        mem_backend_data_t backend_data;

        if (!pager_info)
                backend = &anon_backend;
        else {
                backend = &user_backend;
                if (copy_from_uspace(&backend_data.pager_info, pager_info,
                    sizeof(as_area_pager_info_t)) != EOK) {
                        return (sysarg_t) AS_MAP_FAILED;
                }
        }
        as_area_t *area = as_area_create(AS, flags, size,
            AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
        if (area == NULL)
                return (sysarg_t) AS_MAP_FAILED;

        return (sysarg_t) virt;
}

sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
{
        return (sys_errno_t) as_area_resize(AS, address, size, 0);
}

sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
{
        return (sys_errno_t) as_area_change_flags(AS, flags, address);
}

sys_errno_t sys_as_area_get_info(uintptr_t address, uspace_ptr_as_area_info_t dest)
{
        as_area_t *area;
        as_area_info_t info;

        /* Prevent leaking stack bytes via structure padding. */
        memset(&info, 0, sizeof(info));

        mutex_lock(&AS->lock);
        area = find_area_and_lock(AS, address);
        if (area == NULL) {
                mutex_unlock(&AS->lock);
                return ENOENT;
        }

        info.start_addr = area->base;
        info.size = P2SZ(area->pages);
        info.flags = area->flags;

        mutex_unlock(&area->lock);
        mutex_unlock(&AS->lock);

        copy_to_uspace(dest, &info, sizeof(info));
        return EOK;
}

sys_errno_t sys_as_area_destroy(uintptr_t address)
{
        return (sys_errno_t) as_area_destroy(AS, address);
}

/** Get list of address space areas.
 *
 * @param as    Address space.
 * @param obuf  Place to save pointer to returned buffer.
 * @param osize Place to save size of returned buffer.
 *
 */
as_area_info_t *as_get_area_info(as_t *as, size_t *osize)
{
        mutex_lock(&as->lock);

        /* Count number of areas. */
        size_t area_cnt = odict_count(&as->as_areas);

        size_t isize = area_cnt * sizeof(as_area_info_t);
        as_area_info_t *info = malloc(isize);
        if (!info) {
                mutex_unlock(&as->lock);
                return NULL;
        }

        /* Record area data. */

        size_t area_idx = 0;

        as_area_t *area = as_area_first(as);
        while (area != NULL) {
                assert(area_idx < area_cnt);
                mutex_lock(&area->lock);

                info[area_idx].start_addr = area->base;
                info[area_idx].size = P2SZ(area->pages);
                info[area_idx].flags = area->flags;
                ++area_idx;

                mutex_unlock(&area->lock);
                area = as_area_next(area);
        }

        mutex_unlock(&as->lock);

        *osize = isize;
        return info;
}

/** Print out information about address space.
 *
 * @param as Address space.
 *
 */
void as_print(as_t *as)
{
        mutex_lock(&as->lock);

        /* Print out info about address space areas */
        as_area_t *area = as_area_first(as);
        while (area != NULL) {
                mutex_lock(&area->lock);
                printf("as_area: %p, base=%p, pages=%zu"
                    " (%p - %p)\n", area, (void *) area->base,
                    area->pages, (void *) area->base,
                    (void *) (area->base + P2SZ(area->pages)));
                mutex_unlock(&area->lock);

                area = as_area_next(area);
        }

        mutex_unlock(&as->lock);
}

/** @}
 */

/* [<][>][^][v][top][bottom][index][help] */
HelenOS homepage, sources at GitHub