HelenOS sources

root/kernel/generic/src/proc/scheduler.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. scheduler_fpu_lazy_request
  2. scheduler_init
  3. try_find_thread
  4. find_best_thread
  5. switch_task
  6. relink_rq
  7. fpu_cleanup
  8. fpu_restore
  9. prepare_to_run_thread
  10. add_to_rq
  11. thread_requeue_preempted
  12. thread_requeue_sleeping
  13. cleanup_after_thread
  14. scheduler_enter
  15. scheduler_run
  16. thread_main_func
  17. steal_thread_from
  18. kcpulb
  19. sched_print_list

/*
 * Copyright (c) 2010 Jakub Jermar
 * Copyright (c) 2023 Jiří Zárevúcky
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup kernel_generic_proc
 * @{
 */

/**
 * @file
 * @brief Scheduler and load balancing.
 *
 * This file contains the scheduler and kcpulb kernel thread which
 * performs load-balancing of per-CPU run queues.
 */

#include <assert.h>
#include <atomic.h>
#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <mm/frame.h>
#include <mm/page.h>
#include <mm/as.h>
#include <time/timeout.h>
#include <time/delay.h>
#include <arch/asm.h>
#include <arch/cycle.h>
#include <atomic.h>
#include <synch/spinlock.h>
#include <config.h>
#include <context.h>
#include <fpu_context.h>
#include <halt.h>
#include <arch.h>
#include <adt/list.h>
#include <panic.h>
#include <cpu.h>
#include <stdio.h>
#include <log.h>
#include <stacktrace.h>

atomic_size_t nrdy;  /**< Number of ready threads in the system. */

#ifdef CONFIG_FPU_LAZY
void scheduler_fpu_lazy_request(void)
{
        fpu_enable();

        /* We need this lock to ensure synchronization with thread destructor. */
        irq_spinlock_lock(&CPU->fpu_lock, false);

        /* Save old context */
        thread_t *owner = atomic_load_explicit(&CPU->fpu_owner, memory_order_relaxed);
        if (owner != NULL) {
                fpu_context_save(&owner->fpu_context);
                atomic_store_explicit(&CPU->fpu_owner, NULL, memory_order_relaxed);
        }

        irq_spinlock_unlock(&CPU->fpu_lock, false);

        if (THREAD->fpu_context_exists) {
                fpu_context_restore(&THREAD->fpu_context);
        } else {
                fpu_init();
                THREAD->fpu_context_exists = true;
        }

        atomic_store_explicit(&CPU->fpu_owner, THREAD, memory_order_relaxed);
}
#endif /* CONFIG_FPU_LAZY */

/** Initialize scheduler
 *
 * Initialize kernel scheduler.
 *
 */
void scheduler_init(void)
{
}

/** Get thread to be scheduled
 *
 * Get the optimal thread to be scheduled
 * according to thread accounting and scheduler
 * policy.
 *
 * @return Thread to be scheduled.
 *
 */
static thread_t *try_find_thread(int *rq_index)
{
        assert(interrupts_disabled());
        assert(CPU != NULL);

        if (atomic_load(&CPU->nrdy) == 0)
                return NULL;

        for (int i = 0; i < RQ_COUNT; i++) {
                irq_spinlock_lock(&(CPU->rq[i].lock), false);
                if (CPU->rq[i].n == 0) {
                        /*
                         * If this queue is empty, try a lower-priority queue.
                         */
                        irq_spinlock_unlock(&(CPU->rq[i].lock), false);
                        continue;
                }

                atomic_dec(&CPU->nrdy);
                atomic_dec(&nrdy);
                CPU->rq[i].n--;

                /*
                 * Take the first thread from the queue.
                 */
                thread_t *thread = list_get_instance(
                    list_first(&CPU->rq[i].rq), thread_t, rq_link);
                list_remove(&thread->rq_link);

                irq_spinlock_unlock(&(CPU->rq[i].lock), false);

                *rq_index = i;
                return thread;
        }

        return NULL;
}

/** Get thread to be scheduled
 *
 * Get the optimal thread to be scheduled
 * according to thread accounting and scheduler
 * policy.
 *
 * @return Thread to be scheduled.
 *
 */
static thread_t *find_best_thread(int *rq_index)
{
        assert(interrupts_disabled());
        assert(CPU != NULL);

        while (true) {
                thread_t *thread = try_find_thread(rq_index);

                if (thread != NULL)
                        return thread;

                /*
                 * For there was nothing to run, the CPU goes to sleep
                 * until a hardware interrupt or an IPI comes.
                 * This improves energy saving and hyperthreading.
                 */
                CPU_LOCAL->idle = true;

                /*
                 * Go to sleep with interrupts enabled.
                 * Ideally, this should be atomic, but this is not guaranteed on
                 * all platforms yet, so it is possible we will go sleep when
                 * a thread has just become available.
                 */
                cpu_interruptible_sleep();
        }
}

static void switch_task(task_t *task)
{
        /* If the task stays the same, a lot of work is avoided. */
        if (TASK == task)
                return;

        as_t *old_as = AS;
        as_t *new_as = task->as;

        /* It is possible for two tasks to share one address space. */
        if (old_as != new_as)
                as_switch(old_as, new_as);

        if (TASK)
                task_release(TASK);

        TASK = task;

        task_hold(TASK);

        before_task_runs_arch();
}

/** Prevent rq starvation
 *
 * Prevent low priority threads from starving in rq's.
 *
 * When the function decides to relink rq's, it reconnects
 * respective pointers so that in result threads with 'pri'
 * greater or equal start are moved to a higher-priority queue.
 *
 * @param start Threshold priority.
 *
 */
static void relink_rq(int start)
{
        assert(interrupts_disabled());

        if (CPU_LOCAL->current_clock_tick < CPU_LOCAL->relink_deadline)
                return;

        CPU_LOCAL->relink_deadline = CPU_LOCAL->current_clock_tick + NEEDS_RELINK_MAX;

        /* Temporary cache for lists we are moving. */
        list_t list;
        list_initialize(&list);

        size_t n = 0;

        /* Move every list (except the one with highest priority) one level up. */
        for (int i = RQ_COUNT - 1; i > start; i--) {
                irq_spinlock_lock(&CPU->rq[i].lock, false);

                /* Swap lists. */
                list_swap(&CPU->rq[i].rq, &list);

                /* Swap number of items. */
                size_t tmpn = CPU->rq[i].n;
                CPU->rq[i].n = n;
                n = tmpn;

                irq_spinlock_unlock(&CPU->rq[i].lock, false);
        }

        /* Append the contents of rq[start + 1]  to rq[start]. */
        if (n != 0) {
                irq_spinlock_lock(&CPU->rq[start].lock, false);
                list_concat(&CPU->rq[start].rq, &list);
                CPU->rq[start].n += n;
                irq_spinlock_unlock(&CPU->rq[start].lock, false);
        }
}

/**
 * Do whatever needs to be done with current FPU state before we switch to
 * another thread.
 */
static void fpu_cleanup(void)
{
#if (defined CONFIG_FPU) && (!defined CONFIG_FPU_LAZY)
        fpu_context_save(&THREAD->fpu_context);
#endif
}

/**
 * Set correct FPU state for this thread after switch from another thread.
 */
static void fpu_restore(void)
{
#ifdef CONFIG_FPU_LAZY
        /*
         * The only concurrent modification possible for fpu_owner here is
         * another thread changing it from itself to NULL in its destructor.
         */
        thread_t *owner = atomic_load_explicit(&CPU->fpu_owner,
            memory_order_relaxed);

        if (THREAD == owner)
                fpu_enable();
        else
                fpu_disable();

#elif defined CONFIG_FPU
        fpu_enable();
        if (THREAD->fpu_context_exists)
                fpu_context_restore(&THREAD->fpu_context);
        else {
                fpu_init();
                THREAD->fpu_context_exists = true;
        }
#endif
}

/** Things to do before we switch to THREAD context.
 */
static void prepare_to_run_thread(int rq_index)
{
        relink_rq(rq_index);

        switch_task(THREAD->task);

        assert(atomic_get_unordered(&THREAD->cpu) == CPU);

        atomic_set_unordered(&THREAD->state, Running);
        atomic_set_unordered(&THREAD->priority, rq_index);  /* Correct rq index */

        /*
         * Clear the stolen flag so that it can be migrated
         * when load balancing needs emerge.
         */
        THREAD->stolen = false;

#ifdef SCHEDULER_VERBOSE
        log(LF_OTHER, LVL_DEBUG,
            "cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
            ", nrdy=%zu)", CPU->id, THREAD->tid, rq_index,
            THREAD->ticks, atomic_load(&CPU->nrdy));
#endif

        /*
         * Some architectures provide late kernel PA2KA(identity)
         * mapping in a page fault handler. However, the page fault
         * handler uses the kernel stack of the running thread and
         * therefore cannot be used to map it. The kernel stack, if
         * necessary, is to be mapped in before_thread_runs(). This
         * function must be executed before the switch to the new stack.
         */
        before_thread_runs_arch();

#ifdef CONFIG_UDEBUG
        if (atomic_get_unordered(&THREAD->btrace)) {
                istate_t *istate = THREAD->udebug.uspace_state;
                if (istate != NULL) {
                        printf("Thread %" PRIu64 " stack trace:\n", THREAD->tid);
                        stack_trace_istate(istate);
                } else {
                        printf("Thread %" PRIu64 " interrupt state not available\n", THREAD->tid);
                }

                atomic_set_unordered(&THREAD->btrace, false);
        }
#endif

        fpu_restore();

        /* Time allocation in microseconds. */
        uint64_t time_to_run = (rq_index + 1) * 10000;

        /* Set the time of next preemption. */
        CPU_LOCAL->preempt_deadline =
            CPU_LOCAL->current_clock_tick + us2ticks(time_to_run);

        /* Save current CPU cycle */
        THREAD->last_cycle = get_cycle();
}

static void add_to_rq(thread_t *thread, cpu_t *cpu, int i)
{
        /* Add to the appropriate runqueue. */
        runq_t *rq = &cpu->rq[i];

        irq_spinlock_lock(&rq->lock, false);
        list_append(&thread->rq_link, &rq->rq);
        rq->n++;
        irq_spinlock_unlock(&rq->lock, false);

        atomic_inc(&nrdy);
        atomic_inc(&cpu->nrdy);
}

/** Requeue a thread that was just preempted on this CPU.
 */
static void thread_requeue_preempted(thread_t *thread)
{
        assert(interrupts_disabled());
        assert(atomic_get_unordered(&thread->state) == Running);
        assert(atomic_get_unordered(&thread->cpu) == CPU);

        int prio = atomic_get_unordered(&thread->priority);

        if (prio < RQ_COUNT - 1) {
                prio++;
                atomic_set_unordered(&thread->priority, prio);
        }

        atomic_set_unordered(&thread->state, Ready);

        add_to_rq(thread, CPU, prio);
}

void thread_requeue_sleeping(thread_t *thread)
{
        ipl_t ipl = interrupts_disable();

        assert(atomic_get_unordered(&thread->state) == Sleeping || atomic_get_unordered(&thread->state) == Entering);

        atomic_set_unordered(&thread->priority, 0);
        atomic_set_unordered(&thread->state, Ready);

        /* Prefer the CPU on which the thread ran last */
        cpu_t *cpu = atomic_get_unordered(&thread->cpu);

        if (!cpu) {
                cpu = CPU;
                atomic_set_unordered(&thread->cpu, CPU);
        }

        add_to_rq(thread, cpu, 0);

        interrupts_restore(ipl);
}

static void cleanup_after_thread(thread_t *thread)
{
        assert(CURRENT->mutex_locks == 0);
        assert(interrupts_disabled());

        int expected;

        switch (atomic_get_unordered(&thread->state)) {
        case Running:
                thread_requeue_preempted(thread);
                break;

        case Exiting:
                waitq_close(&thread->join_wq);

                /*
                 * Release the reference CPU has for the thread.
                 * If there are no other references (e.g. threads calling join),
                 * the thread structure is deallocated.
                 */
                thread_put(thread);
                break;

        case Sleeping:
                expected = SLEEP_INITIAL;

                /* Only set SLEEP_ASLEEP in sleep pad if it's still in initial state */
                if (!atomic_compare_exchange_strong_explicit(&thread->sleep_state,
                    &expected, SLEEP_ASLEEP,
                    memory_order_acq_rel, memory_order_acquire)) {

                        assert(expected == SLEEP_WOKE);
                        /* The thread has already been woken up, requeue immediately. */
                        thread_requeue_sleeping(thread);
                }
                break;

        default:
                /*
                 * Entering state is unexpected.
                 */
                panic("tid%" PRIu64 ": unexpected state %s.",
                    thread->tid, thread_states[atomic_get_unordered(&thread->state)]);
                break;
        }
}

/** Switch to scheduler context to let other threads run. */
void scheduler_enter(state_t new_state)
{
        ipl_t ipl = interrupts_disable();

        assert(CPU != NULL);
        assert(THREAD != NULL);

        if (atomic_load(&haltstate))
                halt();

        /* Check if we have a thread to switch to. */

        int rq_index;
        thread_t *new_thread = try_find_thread(&rq_index);

        if (new_thread == NULL && new_state == Running) {
                /* No other thread to run, but we still have work to do here. */
                interrupts_restore(ipl);
                return;
        }

        atomic_set_unordered(&THREAD->state, new_state);

        /* Update thread kernel accounting */
        atomic_time_increment(&THREAD->kcycles, get_cycle() - THREAD->last_cycle);

        fpu_cleanup();

        /*
         * On Sparc, this saves some extra userspace state that's not
         * covered by context_save()/context_restore().
         */
        after_thread_ran_arch();

        if (new_thread) {
                thread_t *old_thread = THREAD;
                CPU_LOCAL->prev_thread = old_thread;
                THREAD = new_thread;
                /* No waiting necessary, we can switch to the new thread directly. */
                prepare_to_run_thread(rq_index);

                current_copy(CURRENT, (current_t *) new_thread->kstack);
                context_swap(&old_thread->saved_context, &new_thread->saved_context);
        } else {
                /*
                 * A new thread isn't immediately available, switch to a separate
                 * stack to sleep or do other idle stuff.
                 */
                current_copy(CURRENT, (current_t *) CPU_LOCAL->stack);
                context_swap(&THREAD->saved_context, &CPU_LOCAL->scheduler_context);
        }

        assert(CURRENT->mutex_locks == 0);
        assert(interrupts_disabled());

        /* Check if we need to clean up after another thread. */
        if (CPU_LOCAL->prev_thread) {
                cleanup_after_thread(CPU_LOCAL->prev_thread);
                CPU_LOCAL->prev_thread = NULL;
        }

        interrupts_restore(ipl);
}

/** Enter main scheduler loop. Never returns.
 *
 * This function switches to a runnable thread as soon as one is available,
 * after which it is only switched back to if a thread is stopping and there is
 * no other thread to run in its place. We need a separate context for that
 * because we're going to block the CPU, which means we need another context
 * to clean up after the previous thread.
 */
void scheduler_run(void)
{
        assert(interrupts_disabled());

        assert(CPU != NULL);
        assert(TASK == NULL);
        assert(THREAD == NULL);
        assert(interrupts_disabled());

        while (!atomic_load(&haltstate)) {
                assert(CURRENT->mutex_locks == 0);

                int rq_index;
                THREAD = find_best_thread(&rq_index);
                prepare_to_run_thread(rq_index);

                /*
                 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
                 * thread's stack.
                 */
                current_copy(CURRENT, (current_t *) THREAD->kstack);

                /* Switch to thread context. */
                context_swap(&CPU_LOCAL->scheduler_context, &THREAD->saved_context);

                /* Back from another thread. */
                assert(CPU != NULL);
                assert(THREAD != NULL);
                assert(CURRENT->mutex_locks == 0);
                assert(interrupts_disabled());

                cleanup_after_thread(THREAD);

                /*
                 * Necessary because we're allowing interrupts in find_best_thread(),
                 * so we need to avoid other code referencing the thread we left.
                 */
                THREAD = NULL;
        }

        halt();
}

/** Thread wrapper.
 *
 * This wrapper is provided to ensure that a starting thread properly handles
 * everything it needs to do when first scheduled, and when it exits.
 */
void thread_main_func(void)
{
        assert(interrupts_disabled());

        void (*f)(void *) = THREAD->thread_code;
        void *arg = THREAD->thread_arg;

        /* This is where each thread wakes up after its creation */

        /* Check if we need to clean up after another thread. */
        if (CPU_LOCAL->prev_thread) {
                cleanup_after_thread(CPU_LOCAL->prev_thread);
                CPU_LOCAL->prev_thread = NULL;
        }

        interrupts_enable();

        f(arg);

        thread_exit();

        /* Not reached */
}

#ifdef CONFIG_SMP

static thread_t *steal_thread_from(cpu_t *old_cpu, int i)
{
        runq_t *old_rq = &old_cpu->rq[i];
        runq_t *new_rq = &CPU->rq[i];

        ipl_t ipl = interrupts_disable();

        irq_spinlock_lock(&old_rq->lock, false);

        /*
         * If fpu_owner is any thread in the list, its store is seen here thanks to
         * the runqueue lock.
         */
        thread_t *fpu_owner = atomic_load_explicit(&old_cpu->fpu_owner,
            memory_order_relaxed);

        /* Search rq from the back */
        list_foreach_rev(old_rq->rq, rq_link, thread_t, thread) {

                /*
                 * Do not steal CPU-wired threads, threads
                 * already stolen, threads for which migration
                 * was temporarily disabled or threads whose
                 * FPU context is still in the CPU.
                 */
                if (thread->stolen || thread->nomigrate || thread == fpu_owner) {
                        continue;
                }

                thread->stolen = true;
                atomic_set_unordered(&thread->cpu, CPU);

                /*
                 * Ready thread on local CPU
                 */

#ifdef KCPULB_VERBOSE
                log(LF_OTHER, LVL_DEBUG,
                    "kcpulb%u: TID %" PRIu64 " -> cpu%u, "
                    "nrdy=%ld, avg=%ld", CPU->id, thread->tid,
                    CPU->id, atomic_load(&CPU->nrdy),
                    atomic_load(&nrdy) / config.cpu_active);
#endif

                /* Remove thread from ready queue. */
                old_rq->n--;
                list_remove(&thread->rq_link);
                irq_spinlock_unlock(&old_rq->lock, false);

                /* Append thread to local queue. */
                irq_spinlock_lock(&new_rq->lock, false);
                list_append(&thread->rq_link, &new_rq->rq);
                new_rq->n++;
                irq_spinlock_unlock(&new_rq->lock, false);

                atomic_dec(&old_cpu->nrdy);
                atomic_inc(&CPU->nrdy);
                interrupts_restore(ipl);
                return thread;
        }

        irq_spinlock_unlock(&old_rq->lock, false);
        interrupts_restore(ipl);
        return NULL;
}

/** Load balancing thread
 *
 * SMP load balancing thread, supervising thread supplies
 * for the CPU it's wired to.
 *
 * @param arg Generic thread argument (unused).
 *
 */
void kcpulb(void *arg)
{
        size_t average;
        size_t rdy;

loop:
        /*
         * Work in 1s intervals.
         */
        thread_sleep(1);

not_satisfied:
        /*
         * Calculate the number of threads that will be migrated/stolen from
         * other CPU's. Note that situation can have changed between two
         * passes. Each time get the most up to date counts.
         *
         */
        average = atomic_load(&nrdy) / config.cpu_active + 1;
        rdy = atomic_load(&CPU->nrdy);

        if (average <= rdy)
                goto satisfied;

        size_t count = average - rdy;

        /*
         * Searching least priority queues on all CPU's first and most priority
         * queues on all CPU's last.
         */
        size_t acpu;
        int rq;

        for (rq = RQ_COUNT - 1; rq >= 0; rq--) {
                for (acpu = 0; acpu < config.cpu_active; acpu++) {
                        cpu_t *cpu = &cpus[acpu];

                        /*
                         * Not interested in ourselves.
                         * Doesn't require interrupt disabling for kcpulb has
                         * THREAD_FLAG_WIRED.
                         *
                         */
                        if (CPU == cpu)
                                continue;

                        if (atomic_load(&cpu->nrdy) <= average)
                                continue;

                        if (steal_thread_from(cpu, rq) && --count == 0)
                                goto satisfied;
                }
        }

        if (atomic_load(&CPU->nrdy)) {
                /*
                 * Be a little bit light-weight and let migrated threads run.
                 *
                 */
                thread_yield();
        } else {
                /*
                 * We failed to migrate a single thread.
                 * Give up this turn.
                 *
                 */
                goto loop;
        }

        goto not_satisfied;

satisfied:
        goto loop;
}
#endif /* CONFIG_SMP */

/** Print information about threads & scheduler queues
 *
 */
void sched_print_list(void)
{
        size_t cpu;
        for (cpu = 0; cpu < config.cpu_count; cpu++) {
                if (!cpus[cpu].active)
                        continue;

                printf("cpu%u: address=%p, nrdy=%zu\n",
                    cpus[cpu].id, &cpus[cpu], atomic_load(&cpus[cpu].nrdy));

                unsigned int i;
                for (i = 0; i < RQ_COUNT; i++) {
                        irq_spinlock_lock(&(cpus[cpu].rq[i].lock), false);
                        if (cpus[cpu].rq[i].n == 0) {
                                irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
                                continue;
                        }

                        printf("\trq[%u]: ", i);
                        list_foreach(cpus[cpu].rq[i].rq, rq_link, thread_t,
                            thread) {
                                printf("%" PRIu64 "(%s) ", thread->tid,
                                    thread_states[atomic_get_unordered(&thread->state)]);
                        }
                        printf("\n");

                        irq_spinlock_unlock(&(cpus[cpu].rq[i].lock), false);
                }
        }
}

/** @}
 */

/* [<][>][^][v][top][bottom][index][help] */
HelenOS homepage, sources at GitHub