/* * Copyright (c) 2017 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup kernel_generic * @{ */ /** @file */ /* * HelenOS capabilities are task-local names for references to kernel objects. * Kernel objects are reference-counted wrappers for a select group of objects * allocated in and by the kernel that can be made accessible to userspace in a * controlled way via integer handles. * * A kernel object (kobject_t) encapsulates one of the following raw objects: * * - IPC call * - IPC phone * - IRQ object * * A capability (cap_t) is either free, allocated or published. Free * capabilities can be allocated, which reserves the capability handle in the * task-local capability space. Allocated capabilities can be published, which * associates them with an existing kernel object. Userspace can only access * published capabilities. * * A published capability may get unpublished, which disassociates it from the * underlying kernel object and puts it back into the allocated state. An * allocated capability can be freed to become available for future use. * * There is a 1:1 correspondence between a kernel object (kobject_t) and the * actual raw object it encapsulates. A kernel object (kobject_t) may have * multiple references, either implicit from one or more capabilities (cap_t), * even from capabilities in different tasks, or explicit as a result of * creating a new reference from a capability handle using kobject_get(), or * creating a new reference from an already existing reference by * kobject_add_ref() or as a result of unpublishing a capability and * disassociating it from its kobject_t using cap_unpublish(). * * A holder of an explicit reference to a kernel object may revoke access to it * from all capabilities that point to it by calling cap_revoke(). * * As kernel objects are reference-counted, they get automatically destroyed * when their last reference is dropped in kobject_put(). The idea is that * whenever a kernel object is inserted into some sort of a container (e.g. a * list or hash table), its reference count should be incremented via * kobject_get() or kobject_add_ref(). When the kernel object is removed from * the container, the reference count should go down via a call to * kobject_put(). */ #include <cap/cap.h> #include <abi/cap.h> #include <proc/task.h> #include <synch/mutex.h> #include <abi/errno.h> #include <mm/slab.h> #include <adt/list.h> #include <synch/syswaitq.h> #include <ipc/ipcrsc.h> #include <ipc/ipc.h> #include <ipc/irq.h> #include <limits.h> #include <stdint.h> #include <stdlib.h> #define CAPS_START ((intptr_t) CAP_NIL + 1) #define CAPS_SIZE (INT_MAX - (int) CAPS_START) #define CAPS_LAST (CAPS_SIZE - 1) static slab_cache_t *cap_cache; static slab_cache_t *kobject_cache; kobject_ops_t *kobject_ops[KOBJECT_TYPE_MAX] = { [KOBJECT_TYPE_CALL] = &call_kobject_ops, [KOBJECT_TYPE_IRQ] = &irq_kobject_ops, [KOBJECT_TYPE_PHONE] = &phone_kobject_ops, [KOBJECT_TYPE_WAITQ] = &waitq_kobject_ops }; static size_t caps_hash(const ht_link_t *item) { cap_t *cap = hash_table_get_inst(item, cap_t, caps_link); return hash_mix(cap_handle_raw(cap->handle)); } static size_t caps_key_hash(const void *key) { const cap_handle_t *handle = key; return hash_mix(cap_handle_raw(*handle)); } static bool caps_key_equal(const void *key, const ht_link_t *item) { const cap_handle_t *handle = key; cap_t *cap = hash_table_get_inst(item, cap_t, caps_link); return *handle == cap->handle; } static const hash_table_ops_t caps_ops = { .hash = caps_hash, .key_hash = caps_key_hash, .key_equal = caps_key_equal }; void caps_init(void) { cap_cache = slab_cache_create("cap_t", sizeof(cap_t), 0, NULL, NULL, 0); kobject_cache = slab_cache_create("kobject_t", sizeof(kobject_t), 0, NULL, NULL, 0); } /** Allocate the capability info structure * * @param task Task for which to allocate the info structure. */ errno_t caps_task_alloc(task_t *task) { task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t)); if (!task->cap_info) return ENOMEM; task->cap_info->handles = ra_arena_create(); if (!task->cap_info->handles) goto error_handles; if (!ra_span_add(task->cap_info->handles, CAPS_START, CAPS_SIZE)) goto error_span; if (!hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops)) goto error_span; return EOK; error_span: ra_arena_destroy(task->cap_info->handles); error_handles: free(task->cap_info); return ENOMEM; } /** Initialize the capability info structure * * @param task Task for which to initialize the info structure. */ void caps_task_init(task_t *task) { mutex_initialize(&task->cap_info->lock, MUTEX_RECURSIVE); for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++) list_initialize(&task->cap_info->type_list[t]); } /** Deallocate the capability info structure * * @param task Task from which to deallocate the info structure. */ void caps_task_free(task_t *task) { hash_table_destroy(&task->cap_info->caps); ra_arena_destroy(task->cap_info->handles); free(task->cap_info); } /** Invoke callback function on task's capabilites of given type * * @param task Task where the invocation should take place. * @param type Kernel object type of the task's capabilities that will be * subject to the callback invocation. * @param cb Callback function. * @param arg Argument for the callback function. * * @return True if the callback was called on all matching capabilities. * @return False if the callback was applied only partially. */ bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type, bool (*cb)(cap_t *, void *), void *arg) { bool done = true; mutex_lock(&task->cap_info->lock); list_foreach_safe(task->cap_info->type_list[type], cur, next) { cap_t *cap = list_get_instance(cur, cap_t, type_link); done = cb(cap, arg); if (!done) break; } mutex_unlock(&task->cap_info->lock); return done; } /** Initialize capability and associate it with its handle * * @param cap Address of the capability. * @param task Backling to the owning task. * @param handle Capability handle. */ static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle) { cap->state = CAP_STATE_FREE; cap->task = task; cap->handle = handle; link_initialize(&cap->kobj_link); link_initialize(&cap->type_link); } /** Get capability using capability handle * * @param task Task whose capability to get. * @param handle Capability handle of the desired capability. * @param state State in which the capability must be. * * @return Address of the desired capability if it exists and its state matches. * @return NULL if no such capability exists or it's in a different state. */ static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state) { assert(mutex_locked(&task->cap_info->lock)); if ((cap_handle_raw(handle) < CAPS_START) || (cap_handle_raw(handle) > CAPS_LAST)) return NULL; ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle); if (!link) return NULL; cap_t *cap = hash_table_get_inst(link, cap_t, caps_link); if (cap->state != state) return NULL; return cap; } /** Allocate new capability * * @param task Task for which to allocate the new capability. * * @param[out] handle New capability handle on success. * * @return An error code in case of error. */ errno_t cap_alloc(task_t *task, cap_handle_t *handle) { mutex_lock(&task->cap_info->lock); cap_t *cap = slab_alloc(cap_cache, FRAME_ATOMIC); if (!cap) { mutex_unlock(&task->cap_info->lock); return ENOMEM; } uintptr_t hbase; if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) { slab_free(cap_cache, cap); mutex_unlock(&task->cap_info->lock); return ENOMEM; } cap_initialize(cap, task, (cap_handle_t) hbase); hash_table_insert(&task->cap_info->caps, &cap->caps_link); cap->state = CAP_STATE_ALLOCATED; *handle = cap->handle; mutex_unlock(&task->cap_info->lock); return EOK; } /** Publish allocated capability * * The kernel object is moved into the capability. In other words, its reference * is handed over to the capability. Once published, userspace can access and * manipulate the capability. * * @param task Task in which to publish the capability. * @param handle Capability handle. * @param kobj Kernel object. */ void cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj) { mutex_lock(&kobj->caps_list_lock); mutex_lock(&task->cap_info->lock); cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED); assert(cap); cap->state = CAP_STATE_PUBLISHED; /* Hand over kobj's reference to cap */ cap->kobject = kobj; list_append(&cap->kobj_link, &kobj->caps_list); list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]); mutex_unlock(&task->cap_info->lock); mutex_unlock(&kobj->caps_list_lock); } static void cap_unpublish_unsafe(cap_t *cap) { cap->kobject = NULL; list_remove(&cap->kobj_link); list_remove(&cap->type_link); cap->state = CAP_STATE_ALLOCATED; } /** Unpublish published capability * * The kernel object is moved out of the capability. In other words, the * capability's reference to the objects is handed over to the kernel object * pointer returned by this function. Once unpublished, the capability does not * refer to any kernel object anymore. * * @param task Task in which to unpublish the capability. * @param handle Capability handle. * @param type Kernel object type of the object associated with the * capability. * * @return Pointer and explicit reference to the kobject that was associated * with the capability. */ kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type) { kobject_t *kobj = NULL; restart: mutex_lock(&task->cap_info->lock); cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED); if (cap) { if (cap->kobject->type == type) { /* Hand over cap's reference to kobj */ kobj = cap->kobject; if (mutex_trylock(&kobj->caps_list_lock) != EOK) { mutex_unlock(&task->cap_info->lock); kobj = NULL; goto restart; } cap_unpublish_unsafe(cap); mutex_unlock(&kobj->caps_list_lock); } } mutex_unlock(&task->cap_info->lock); return kobj; } /** Revoke access to kobject from all existing capabilities * * All published capabilities associated with the kobject are unpublished (i.e. * their new state is set to CAP_STATE_ALLOCATED) and no longer point to the * kobject. Kobject's reference count is decreased accordingly. * * Note that the caller is supposed to hold an explicit reference to the kobject * so that the kobject is guaranteed to exist when this function returns. * * @param kobj Pointer and explicit reference to the kobject capabilities of * which are about to be unpublished. */ void cap_revoke(kobject_t *kobj) { mutex_lock(&kobj->caps_list_lock); list_foreach_safe(kobj->caps_list, cur, hlp) { cap_t *cap = list_get_instance(cur, cap_t, kobj_link); mutex_lock(&cap->task->cap_info->lock); cap_unpublish_unsafe(cap); /* Drop the reference for the unpublished capability */ kobject_put(kobj); mutex_unlock(&cap->task->cap_info->lock); } mutex_unlock(&kobj->caps_list_lock); } /** Free allocated capability * * @param task Task in which to free the capability. * @param handle Capability handle. */ void cap_free(task_t *task, cap_handle_t handle) { assert(cap_handle_raw(handle) >= CAPS_START); assert(cap_handle_raw(handle) <= CAPS_LAST); mutex_lock(&task->cap_info->lock); cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED); assert(cap); hash_table_remove_item(&task->cap_info->caps, &cap->caps_link); ra_free(task->cap_info->handles, cap_handle_raw(handle), 1); slab_free(cap_cache, cap); mutex_unlock(&task->cap_info->lock); } kobject_t *kobject_alloc(unsigned int flags) { return slab_alloc(kobject_cache, flags); } void kobject_free(kobject_t *kobj) { slab_free(kobject_cache, kobj); } /** Initialize kernel object * * @param kobj Kernel object to initialize. * @param type Type of the kernel object. * @param raw Raw pointer to the encapsulated object. */ void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw) { atomic_store(&kobj->refcnt, 1); mutex_initialize(&kobj->caps_list_lock, MUTEX_PASSIVE); list_initialize(&kobj->caps_list); kobj->type = type; kobj->raw = raw; } /** Get new reference to kernel object from capability * * @param task Task from which to get the reference. * @param handle Capability handle. * @param type Kernel object type of the object associated with the * capability referenced by handle. * * @return Kernel object with incremented reference count on success. * @return NULL if there is no matching capability or kernel object. */ kobject_t * kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type) { kobject_t *kobj = NULL; mutex_lock(&task->cap_info->lock); cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED); if (cap) { if (cap->kobject->type == type) { kobj = cap->kobject; atomic_inc(&kobj->refcnt); } } mutex_unlock(&task->cap_info->lock); return kobj; } /** Record new reference * * @param kobj Kernel object from which the new reference is created. */ void kobject_add_ref(kobject_t *kobj) { atomic_inc(&kobj->refcnt); } /** Drop reference to kernel object * * The encapsulated object and the kobject_t wrapper are both destroyed when the * last reference is dropped. * * @param kobj Kernel object whose reference to drop. */ void kobject_put(kobject_t *kobj) { if (atomic_postdec(&kobj->refcnt) == 1) { KOBJECT_OP(kobj)->destroy(kobj->raw); kobject_free(kobj); } } /** @} */