HelenOS sources

root/uspace/app/mkexfat/mkexfat.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. usage
  2. cfg_params_initialize
  3. cfg_print_info
  4. vbr_initialize
  5. bootsec_write
  6. ebs_write
  7. fat_initialize
  8. fat_allocate_clusters
  9. bitmap_write
  10. upcase_table_write
  11. root_dentries_write
  12. log2i
  13. vbr_checksum_start
  14. vbr_checksum_update
  15. upcase_table_checksum
  16. is_power_of_two
  17. main

/*
 * Copyright (c) 2024 Jiri Svoboda
 * Copyright (c) 2012 Maurizio Lombardi
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup mkexfat
 * @{
 */

/**
 * @file        mkexfat.c
 * @brief       Tool for creating new exFAT file systems.
 *
 */

#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <block.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <byteorder.h>
#include <align.h>
#include <rndgen.h>
#include <str.h>
#include <getopt.h>
#include <macros.h>
#include "exfat.h"
#include "upcase.h"

#define NAME    "mkexfat"

/** First sector of the FAT */
#define FAT_SECTOR_START 128

/** First sector of the Main Extended Boot Region */
#define EBS_SECTOR_START 1

/** First sector of the Main Extended Boot Region Backup */
#define EBS_BACKUP_SECTOR_START 13

/** First sector of the Main Boot Sector */
#define MBS_SECTOR 0

/** First sector of the Main Boot Sector Backup */
#define MBS_BACKUP_SECTOR 12

/** VBR Checksum sector */
#define VBR_CHECKSUM_SECTOR 11

/** VBR Backup Checksum sector */
#define VBR_BACKUP_CHECKSUM_SECTOR 23

/** Size of the Main Extended Boot Region */
#define EBS_SIZE 8

/** Divide and round up. */
#define div_round_up(a, b) (((a) + (b) - 1) / (b))

/** The default size of each cluster is 4096 byte */
#define DEFAULT_CLUSTER_SIZE 4096

/** Index of the first free cluster on the device */
#define FIRST_FREE_CLUSTER   2

typedef struct exfat_cfg {
        aoff64_t volume_start;
        aoff64_t volume_count;
        unsigned long fat_sector_count;
        unsigned long data_start_sector;
        unsigned long rootdir_cluster;
        unsigned long upcase_table_cluster;
        unsigned long bitmap_cluster;
        unsigned long total_clusters;
        unsigned long allocated_clusters;
        size_t   bitmap_size;
        size_t   sector_size;
        size_t   cluster_size;
        const char *label;
} exfat_cfg_t;

static unsigned log2i(unsigned n);

static uint32_t
vbr_checksum_start(void const *octets, size_t nbytes);

static void
vbr_checksum_update(void const *octets, size_t nbytes, uint32_t *checksum);

static errno_t
ebs_write(service_id_t service_id, exfat_cfg_t *cfg,
    int base, uint32_t *chksum);

static errno_t
bitmap_write(service_id_t service_id, exfat_cfg_t *cfg);

static uint32_t
upcase_table_checksum(void const *data, size_t nbytes);

static struct option const long_options[] = {
        { "help", no_argument, 0, 'h' },
        { "cluster-size", required_argument, 0, 'c' },
        { "fs-size", required_argument, 0, 's' },
        { "label", required_argument, 0, 'L' },
};

static void usage(void)
{
        printf("Usage: mkexfat [options] <device>\n"
            "-c, --cluster-size ## Specify the cluster size (Kb)\n"
            "-s, --fs-size ##      Specify the filesystem size (sectors)\n"
            "    --label ##        Volume label\n");
}

/** Initialize the exFAT params structure.
 *
 * @param cfg Pointer to the exFAT params structure to initialize.
 */
static void
cfg_params_initialize(exfat_cfg_t *cfg)
{
        unsigned long fat_bytes;
        unsigned long fat_cls;
        aoff64_t const volume_bytes = (cfg->volume_count - FAT_SECTOR_START) *
            cfg->sector_size;

        if (cfg->cluster_size != 0) {
                /* The user already choose the cluster size he wants */
                cfg->total_clusters = volume_bytes / cfg->cluster_size;
                goto skip_cluster_size_set;
        }

        cfg->total_clusters = volume_bytes / DEFAULT_CLUSTER_SIZE;
        cfg->cluster_size = DEFAULT_CLUSTER_SIZE;

        /*
         * Compute the required cluster size to index
         * the entire storage device and to keep the FAT
         * size less or equal to 64 Mb.
         */
        while (cfg->total_clusters > 16000000ULL &&
            (cfg->cluster_size < 32 * 1024 * 1024)) {

                cfg->cluster_size <<= 1;
                cfg->total_clusters = volume_bytes / cfg->cluster_size;
        }

skip_cluster_size_set:

        /* Compute the FAT size in sectors */
        fat_bytes = (cfg->total_clusters + 3) * sizeof(uint32_t);
        cfg->fat_sector_count = div_round_up(fat_bytes, cfg->sector_size);

        /* Compute the number of the first data sector */
        cfg->data_start_sector = ROUND_UP(FAT_SECTOR_START +
            cfg->fat_sector_count, cfg->cluster_size / cfg->sector_size);

        /*
         * Subtract the FAT space from the total
         * number of available clusters.
         */
        fat_cls = div_round_up((cfg->data_start_sector -
            FAT_SECTOR_START) * cfg->sector_size,
            cfg->cluster_size);
        if (fat_cls >= cfg->total_clusters) {
                /* Insufficient disk space on device */
                cfg->total_clusters = 0;
                return;
        }
        cfg->total_clusters -= fat_cls;

        /* Compute the bitmap size */
        cfg->bitmap_size = div_round_up(cfg->total_clusters, 8);

        /* Compute the number of clusters reserved to the bitmap */
        cfg->allocated_clusters = div_round_up(cfg->bitmap_size,
            cfg->cluster_size);

        /* This account for the root directory */
        cfg->allocated_clusters++;

        /* Compute the number of clusters reserved to the upcase table */
        cfg->allocated_clusters += div_round_up(sizeof(upcase_table),
            cfg->cluster_size);

        /* Will be set later */
        cfg->rootdir_cluster = 0;

        /* Bitmap always starts at the first free cluster */
        cfg->bitmap_cluster = FIRST_FREE_CLUSTER;

        /* The first sector of the partition is zero */
        cfg->volume_start = 0;
}

/** Prints the exFAT structure values
 *
 * @param cfg Pointer to the exfat_cfg_t structure.
 */
static void
cfg_print_info(exfat_cfg_t *cfg)
{
        printf("Sector size:           %lu\n",
            (unsigned long) cfg->sector_size);
        printf("Cluster size:          %lu\n",
            (unsigned long) cfg->cluster_size);
        printf("FAT size in sectors:   %lu\n", cfg->fat_sector_count);
        printf("Data start sector:     %lu\n", cfg->data_start_sector);
        printf("Total num of clusters: %lu\n", cfg->total_clusters);
        printf("Total used clusters:   %lu\n", cfg->allocated_clusters);
        printf("Bitmap size:           %lu\n", (unsigned long)
            div_round_up(cfg->bitmap_size, cfg->cluster_size));
        printf("Upcase table size:     %lu\n", (unsigned long)
            div_round_up(sizeof(upcase_table), cfg->cluster_size));
}

/** Initialize the Main Boot Sector fields.
 *
 * @param mbs Pointer to the Main Boot Sector structure.
 * @param cfg Pointer to the exFAT configuration structure.
 * @param chksum Place to store initial checksum value.
 * @return EOK on success or error code
 */
static uint32_t
vbr_initialize(exfat_bs_t *mbs, exfat_cfg_t *cfg, uint32_t *chksum)
{
        rndgen_t *rndgen;
        errno_t rc;
        uint32_t vsn;

        /* Generate volume serial number */

        rc = rndgen_create(&rndgen);
        if (rc != EOK)
                return rc;

        rc = rndgen_uint32(rndgen, &vsn);
        if (rc != EOK) {
                rndgen_destroy(rndgen);
                return rc;
        }

        rndgen_destroy(rndgen);

        /* Fill the structure with zeroes */
        memset(mbs, 0, sizeof(exfat_bs_t));

        /* Init Jump Boot section */
        mbs->jump[0] = 0xEB;
        mbs->jump[1] = 0x76;
        mbs->jump[2] = 0x90;

        /* Set the filesystem name */
        memcpy(mbs->oem_name, "EXFAT   ", sizeof(mbs->oem_name));

        mbs->volume_start = host2uint64_t_le(cfg->volume_start);
        mbs->volume_count = host2uint64_t_le(cfg->volume_count);
        mbs->fat_sector_start = host2uint32_t_le(FAT_SECTOR_START);
        mbs->fat_sector_count = host2uint32_t_le(cfg->fat_sector_count);
        mbs->data_start_sector = host2uint32_t_le(cfg->data_start_sector);

        mbs->data_clusters = host2uint32_t_le(cfg->total_clusters);

        mbs->rootdir_cluster = host2uint32_t_le(cfg->rootdir_cluster);
        mbs->volume_serial = host2uint32_t_le(vsn);
        mbs->version.major = 1;
        mbs->version.minor = 0;
        mbs->volume_flags = host2uint16_t_le(0);
        mbs->bytes_per_sector = log2i(cfg->sector_size);
        mbs->sec_per_cluster = log2i(cfg->cluster_size / cfg->sector_size);

        /* Maximum cluster size is 32 Mb */
        assert((mbs->bytes_per_sector + mbs->sec_per_cluster) <= 25);

        mbs->fat_count = 1;
        mbs->drive_no = 0x80;
        mbs->allocated_percent = 0;
        mbs->signature = host2uint16_t_le(0xAA55);

        *chksum = vbr_checksum_start(mbs, sizeof(exfat_bs_t));
        return EOK;
}

static errno_t
bootsec_write(service_id_t service_id, exfat_cfg_t *cfg)
{
        exfat_bs_t mbs;
        uint32_t vbr_checksum;
        uint32_t *chksum_sector;
        errno_t rc;
        unsigned idx;

        chksum_sector = calloc(cfg->sector_size, sizeof(uint8_t));
        if (!chksum_sector)
                return ENOMEM;

        rc = vbr_initialize(&mbs, cfg, &vbr_checksum);
        if (rc != EOK)
                goto exit;

        /* Write the Main Boot Sector to disk */
        rc = block_write_direct(service_id, MBS_SECTOR, 1, &mbs);
        if (rc != EOK)
                goto exit;

        /* Write the Main extended boot sectors to disk */
        rc = ebs_write(service_id, cfg, EBS_SECTOR_START, &vbr_checksum);
        if (rc != EOK)
                goto exit;

        /* Write the Main Boot Sector backup to disk */
        rc = block_write_direct(service_id, MBS_BACKUP_SECTOR, 1, &mbs);
        if (rc != EOK)
                goto exit;

        /* Initialize the checksum sectors */
        for (idx = 0; idx < cfg->sector_size / sizeof(uint32_t); ++idx)
                chksum_sector[idx] = host2uint32_t_le(vbr_checksum);

        /* Write the main checksum sector to disk */
        rc = block_write_direct(service_id,
            VBR_CHECKSUM_SECTOR, 1, chksum_sector);
        if (rc != EOK)
                goto exit;

        /* Write the backup checksum sector to disk */
        rc = block_write_direct(service_id,
            VBR_BACKUP_CHECKSUM_SECTOR, 1, chksum_sector);
        if (rc != EOK)
                goto exit;

        /* Write the Main extended boot sectors backup to disk */
        rc = ebs_write(service_id, cfg,
            EBS_BACKUP_SECTOR_START, &vbr_checksum);

exit:
        free(chksum_sector);
        return rc;
}

/** Write the Main Extended Boot Sector to disk
 *
 * @param service_id  The service id.
 * @param cfg  Pointer to the exFAT configuration structure.
 * @param base Base sector of the EBS.
 * @return  EOK on success or an error code.
 */
static errno_t
ebs_write(service_id_t service_id, exfat_cfg_t *cfg, int base,
    uint32_t *chksum)
{
        uint32_t *ebs = calloc(cfg->sector_size, sizeof(uint8_t));
        int i;
        errno_t rc;

        if (!ebs)
                return ENOMEM;

        ebs[cfg->sector_size / 4 - 1] = host2uint32_t_le(0xAA550000);

        for (i = 0; i < EBS_SIZE; ++i) {
                vbr_checksum_update(ebs, cfg->sector_size, chksum);

                rc = block_write_direct(service_id,
                    i + base, 1, ebs);

                if (rc != EOK)
                        goto exit;
        }

        /*
         * The OEM record is not yet used
         * by the official exFAT implementation, we'll fill
         * it with zeroes.
         */

        memset(ebs, 0, cfg->sector_size);
        vbr_checksum_update(ebs, cfg->sector_size, chksum);

        rc = block_write_direct(service_id, i++ + base, 1, ebs);
        if (rc != EOK)
                goto exit;

        /* The next sector is reserved, fill it with zeroes too */
        vbr_checksum_update(ebs, cfg->sector_size, chksum);

        rc = block_write_direct(service_id, i + base, 1, ebs);
        if (rc != EOK)
                goto exit;

exit:
        free(ebs);
        return rc;
}

/** Initialize the FAT table.
 *
 * @param service_id  The service id.
 * @param cfg Pointer to the exfat_cfg structure.
 * @return EOK on success or an error code.
 */
static errno_t
fat_initialize(service_id_t service_id, exfat_cfg_t *cfg)
{
        unsigned long i;
        uint32_t *pfat;
        errno_t rc;

        pfat = calloc(cfg->sector_size, 1);
        if (!pfat)
                return ENOMEM;

        pfat[0] = host2uint32_t_le(0xFFFFFFF8);
        pfat[1] = host2uint32_t_le(0xFFFFFFFF);

        rc = block_write_direct(service_id, FAT_SECTOR_START, 1, pfat);
        if (rc != EOK)
                goto error;

        pfat[0] = pfat[1] = 0;

        for (i = 1; i < cfg->fat_sector_count; ++i) {
                rc = block_write_direct(service_id,
                    FAT_SECTOR_START + i, 1, pfat);
                if (rc != EOK)
                        goto error;
        }

error:
        free(pfat);
        return rc;
}

/** Allocate a given number of clusters and create a cluster chain.
 *
 * @param service_id  The service id.
 * @param cfg  Pointer to the exfat configuration structure.
 * @param cur_cls  Cluster index from where to start the allocation.
 * @param ncls  Number of clusters to allocate.
 * @return EOK on success or an error code.
 */
static errno_t
fat_allocate_clusters(service_id_t service_id, exfat_cfg_t *cfg,
    uint32_t cur_cls, unsigned long ncls)
{
        errno_t rc;
        unsigned const fat_entries = cfg->sector_size / sizeof(uint32_t);
        aoff64_t fat_sec = cur_cls / fat_entries + FAT_SECTOR_START;
        uint32_t *fat;
        uint32_t next_cls = cur_cls;

        cur_cls %= fat_entries;

        fat = malloc(cfg->sector_size);
        if (!fat)
                return ENOMEM;

loop:
        rc = block_read_direct(service_id, fat_sec, 1, fat);
        if (rc != EOK)
                goto exit;

        assert(fat[cur_cls] == 0);
        assert(ncls > 0);

        for (; cur_cls < fat_entries && ncls > 1; ++cur_cls, --ncls)
                fat[cur_cls] = host2uint32_t_le(++next_cls);

        if (cur_cls == fat_entries) {
                /*
                 * This sector is full, there are no more free entries,
                 * commit the changes to disk and restart from the next
                 * sector.
                 */
                rc = block_write_direct(service_id, fat_sec++, 1, fat);
                if (rc != EOK)
                        goto exit;
                cur_cls = 0;
                goto loop;
        } else if (ncls == 1) {
                /*
                 * This is the last cluster of this chain, mark it
                 * with EOF.
                 */
                fat[cur_cls] = host2uint32_t_le(0xFFFFFFFF);
        }

        rc = block_write_direct(service_id, fat_sec, 1, fat);

exit:
        free(fat);
        return rc;
}

/** Initialize the allocation bitmap.
 *
 * @param service_id   The service id.
 * @param cfg  Pointer to the exfat configuration structure.
 * @return  EOK on success or an error code.
 */
static errno_t
bitmap_write(service_id_t service_id, exfat_cfg_t *cfg)
{
        unsigned long i, sec;
        unsigned long allocated_cls;
        errno_t rc = EOK;
        bool need_reset = true;

        /* Bitmap size in sectors */
        size_t const bss = div_round_up(cfg->bitmap_size, cfg->sector_size);

        uint8_t *bitmap = malloc(cfg->sector_size);
        if (!bitmap)
                return ENOMEM;

        allocated_cls = cfg->allocated_clusters;

        for (sec = 0; sec < bss; ++sec) {
                if (need_reset) {
                        need_reset = false;
                        memset(bitmap, 0, cfg->sector_size);
                }
                if (allocated_cls > 0) {
                        for (i = 0; i < allocated_cls; ++i) {
                                unsigned byte_idx = i / 8;
                                unsigned bit_idx = i % 8;

                                if (byte_idx == cfg->sector_size)
                                        break;
                                bitmap[byte_idx] |= 1 << bit_idx;
                        }

                        allocated_cls -= i;
                        need_reset = true;
                }

                rc = block_write_direct(service_id,
                    cfg->data_start_sector + sec, 1, bitmap);
                if (rc != EOK)
                        goto exit;
        }

exit:
        free(bitmap);
        return rc;
}

/** Write the upcase table to disk. */
static errno_t
upcase_table_write(service_id_t service_id, exfat_cfg_t *cfg)
{
        errno_t rc = EOK;
        aoff64_t start_sec, nsecs, i;
        uint8_t *table_ptr;
        uint8_t *buf;
        size_t table_size = sizeof(upcase_table);

        buf = malloc(cfg->sector_size);
        if (!buf)
                return ENOENT;

        /* Compute the start sector of the upcase table */
        start_sec = cfg->data_start_sector;
        start_sec += ((cfg->upcase_table_cluster - 2) * cfg->cluster_size) /
            cfg->sector_size;

        /* Compute the number of sectors needed to store the table on disk */
        nsecs = div_round_up(sizeof(upcase_table), cfg->sector_size);
        table_ptr = (uint8_t *) upcase_table;

        for (i = 0; i < nsecs; ++i,
            table_ptr += min(table_size, cfg->sector_size),
            table_size -= cfg->sector_size) {

                if (table_size < cfg->sector_size) {
                        /*
                         * Reset the content of the unused part
                         * of the last sector.
                         */
                        memset(buf, 0, cfg->sector_size);
                }
                memcpy(buf, table_ptr, min(table_size, cfg->sector_size));

                rc = block_write_direct(service_id,
                    start_sec + i, 1, buf);
                if (rc != EOK)
                        goto exit;
        }

exit:
        free(buf);
        return rc;
}

/** Initialize and write the root directory entries to disk.
 *
 * @param service_id   The service id.
 * @param cfg   Pointer to the exFAT configuration structure.
 * @return   EOK on success or an error code.
 */
static errno_t
root_dentries_write(service_id_t service_id, exfat_cfg_t *cfg)
{
        exfat_dentry_t *d;
        aoff64_t rootdir_sec;
        uint16_t wlabel[EXFAT_VOLLABEL_LEN + 1];
        errno_t rc;
        uint8_t *data;
        unsigned long i;

        data = calloc(cfg->sector_size, 1);
        if (!data)
                return ENOMEM;

        d = (exfat_dentry_t *) data;

        /* Initialize the volume label dentry */

        if (cfg->label != NULL) {
                memset(wlabel, 0, (EXFAT_VOLLABEL_LEN + 1) * sizeof(uint16_t));
                rc = str_to_utf16(wlabel, EXFAT_VOLLABEL_LEN + 1, cfg->label);
                if (rc != EOK) {
                        rc = EINVAL;
                        goto exit;
                }

                d->type = EXFAT_TYPE_VOLLABEL;
                memcpy(d->vollabel.label, wlabel, EXFAT_VOLLABEL_LEN * 2);
                d->vollabel.size = utf16_wsize(wlabel);
                assert(d->vollabel.size <= EXFAT_VOLLABEL_LEN);

                d++;
        } else {
                d->type = EXFAT_TYPE_VOLLABEL & ~EXFAT_TYPE_USED;
        }

        /* Initialize the allocation bitmap dentry */
        d->type = EXFAT_TYPE_BITMAP;
        d->bitmap.flags = 0; /* First FAT */
        d->bitmap.firstc = host2uint32_t_le(cfg->bitmap_cluster);
        d->bitmap.size = host2uint64_t_le(cfg->bitmap_size);

        d++;

        /* Initialize the upcase table dentry */
        d->type = EXFAT_TYPE_UCTABLE;
        d->uctable.checksum = host2uint32_t_le(upcase_table_checksum(
            upcase_table, sizeof(upcase_table)));
        d->uctable.firstc = host2uint32_t_le(cfg->upcase_table_cluster);
        d->uctable.size = host2uint64_t_le(sizeof(upcase_table));

        /* Compute the number of the sector where the rootdir resides */

        rootdir_sec = cfg->data_start_sector;
        rootdir_sec += ((cfg->rootdir_cluster - 2) * cfg->cluster_size) /
            cfg->sector_size;

        rc = block_write_direct(service_id, rootdir_sec, 1, data);
        if (rc != EOK)
                goto exit;

        /*
         * Fill the content of the sectors not used by the
         * root directory with zeroes.
         */
        memset(data, 0, cfg->sector_size);
        for (i = 1; i < cfg->cluster_size / cfg->sector_size; ++i) {
                rc = block_write_direct(service_id, rootdir_sec + i, 1, data);
                if (rc != EOK)
                        goto exit;
        }

exit:
        free(data);
        return rc;
}

/** Given a number (n), returns the result of log2(n).
 *
 * It works only if n is a power of two.
 */
static unsigned
log2i(unsigned n)
{
        unsigned r;

        r = 0;
        while (n >> r != 1)
                ++r;

        return r;
}

/** Initialize the VBR checksum calculation */
static uint32_t
vbr_checksum_start(void const *data, size_t nbytes)
{
        uint32_t checksum = 0;
        size_t index;
        uint8_t const *octets = (uint8_t *) data;

        for (index = 0; index < nbytes; ++index) {
                if (index == 106 || index == 107 || index == 112) {
                        /* Skip volume_flags and allocated_percent fields */
                        continue;
                }

                checksum = ((checksum << 31) | (checksum >> 1)) +
                    octets[index];
        }

        return checksum;
}

/** Update the VBR checksum */
static void
vbr_checksum_update(void const *data, size_t nbytes, uint32_t *checksum)
{
        size_t index;
        uint8_t const *octets = (uint8_t *) data;

        for (index = 0; index < nbytes; ++index) {
                *checksum = ((*checksum << 31) | (*checksum >> 1)) +
                    octets[index];
        }
}

/** Compute the checksum of the upcase table.
 *
 * @param data   Pointer to the upcase table.
 * @param nbytes size of the upcase table in bytes.
 * @return   Checksum value.
 */
static uint32_t
upcase_table_checksum(void const *data, size_t nbytes)
{
        size_t index;
        uint32_t chksum = 0;
        uint8_t const *octets = (uint8_t *) data;

        for (index = 0; index < nbytes; ++index)
                chksum = ((chksum << 31) | (chksum >> 1)) + octets[index];

        return chksum;
}

/** Check if a given number is a power of two.
 *
 * @param n   The number to check.
 * @return    true if n is a power of two, false otherwise.
 */
static bool
is_power_of_two(unsigned long n)
{
        if (n == 0)
                return false;

        return (n & (n - 1)) == 0;
}

int main (int argc, char **argv)
{
        exfat_cfg_t cfg;
        uint32_t next_cls;
        char *dev_path;
        service_id_t service_id;
        errno_t rc;
        int c, opt_ind;
        aoff64_t user_fs_size = 0;

        if (argc < 2) {
                printf(NAME ": Error, argument missing\n");
                usage();
                return 1;
        }

        cfg.cluster_size = 0;
        cfg.label = NULL;

        c = 0;
        optind = 0;
        opt_ind = 0;
        while (c != -1) {
                c = getopt_long(argc, argv, "hs:c:L:",
                    long_options, &opt_ind);
                switch (c) {
                case 'h':
                        usage();
                        return 0;
                case 's':
                        user_fs_size = (aoff64_t) strtol(optarg, NULL, 10);
                        break;

                case 'c':
                        cfg.cluster_size = strtol(optarg, NULL, 10) * 1024;
                        if (cfg.cluster_size < 4096) {
                                printf(NAME ": Error, cluster size can't"
                                    " be less than 4096 byte.\n");
                                return 1;
                        } else if (cfg.cluster_size > 32 * 1024 * 1024) {
                                printf(NAME ": Error, cluster size can't"
                                    " be greater than 32 Mb");
                                return 1;
                        }

                        if (!is_power_of_two(cfg.cluster_size)) {
                                printf(NAME ": Error, the size of the cluster"
                                    " must be a power of two.\n");
                                return 1;
                        }
                        break;
                case 'L':
                        cfg.label = optarg;
                        break;
                }
        }

        argv += optind;
        dev_path = *argv;

        if (!dev_path) {
                printf(NAME ": Error, you must specify a valid block"
                    " device.\n");
                usage();
                return 1;
        }

        printf("Device = %s\n", dev_path);

        rc = loc_service_get_id(dev_path, &service_id, 0);
        if (rc != EOK) {
                printf(NAME ": Error resolving device `%s'.\n", dev_path);
                return 2;
        }

        rc = block_init(service_id);
        if (rc != EOK) {
                printf(NAME ": Error initializing libblock.\n");
                return 2;
        }

        rc = block_get_bsize(service_id, &cfg.sector_size);
        if (rc != EOK) {
                printf(NAME ": Error determining device sector size.\n");
                return 2;
        }

        user_fs_size *= cfg.sector_size;
        if (user_fs_size > 0 && user_fs_size < 1024 * 1024) {
                printf(NAME ": Error, fs size can't be less"
                    " than 1 Mb.\n");
                return 1;
        }

        if (cfg.sector_size > 4096) {
                printf(NAME ": Error, sector size can't be greater"
                    " than 4096 bytes.\n");
                return 2;
        }

        rc = block_get_nblocks(service_id, &cfg.volume_count);
        if (rc != EOK) {
                printf(NAME ": Warning, failed to obtain"
                    " block device size.\n");

                if (user_fs_size == 0) {
                        printf(NAME ": You must specify the"
                            " filesystem size.\n");
                        return 1;
                }
        } else {
                printf("Block device has %" PRIuOFF64 " blocks.\n",
                    cfg.volume_count);
        }

        if (user_fs_size != 0) {
                if (user_fs_size > cfg.volume_count * cfg.sector_size) {
                        printf(NAME ": Error, the device is not big enough"
                            " to create a filesystem of"
                            " the specified size.\n");
                        return 1;
                }

                cfg.volume_count = user_fs_size / cfg.sector_size;
        }

        cfg_params_initialize(&cfg);
        cfg_print_info(&cfg);

        if (cfg.total_clusters <= cfg.allocated_clusters + 2) {
                printf(NAME ": Error, insufficient disk space on device.\n");
                return 2;
        }

        printf("Writing the allocation table.\n");

        /* Initialize the FAT table */
        rc = fat_initialize(service_id, &cfg);
        if (rc != EOK) {
                printf(NAME ": Error, failed to write the FAT to disk\n");
                return 2;
        }

        /* Allocate clusters for the bitmap */
        rc = fat_allocate_clusters(service_id, &cfg, cfg.bitmap_cluster,
            div_round_up(cfg.bitmap_size, cfg.cluster_size));
        if (rc != EOK) {
                printf(NAME ": Error, failed to allocate"
                    " clusters for bitmap.\n");
                return 2;
        }

        next_cls = cfg.bitmap_cluster +
            div_round_up(cfg.bitmap_size, cfg.cluster_size);
        cfg.upcase_table_cluster = next_cls;

        /* Allocate clusters for the upcase table */
        rc = fat_allocate_clusters(service_id, &cfg, next_cls,
            div_round_up(sizeof(upcase_table), cfg.cluster_size));
        if (rc != EOK) {
                printf(NAME ":Error, failed to allocate clusters"
                    " for the upcase table.\n");
                return 2;
        }

        next_cls += div_round_up(sizeof(upcase_table), cfg.cluster_size);
        cfg.rootdir_cluster = next_cls;

        /* Allocate a cluster for the root directory entry */
        rc = fat_allocate_clusters(service_id, &cfg, next_cls, 1);
        if (rc != EOK) {
                printf(NAME ": Error, failed to allocate cluster"
                    " for the root dentry.\n");
                return 2;
        }

        printf("Writing the allocation bitmap.\n");

        /* Write the allocation bitmap to disk */
        rc = bitmap_write(service_id, &cfg);
        if (rc != EOK) {
                printf(NAME ": Error, failed to write the allocation"
                    " bitmap to disk.\n");
                return 2;
        }

        printf("Writing the upcase table.\n");

        /* Write the upcase table to disk */
        rc = upcase_table_write(service_id, &cfg);
        if (rc != EOK) {
                printf(NAME ": Error, failed to write the"
                    " upcase table to disk.\n");
                return 2;
        }

        printf("Writing the root directory.\n");

        rc = root_dentries_write(service_id, &cfg);
        if (rc != EOK) {
                printf(NAME ": Error, failed to write the root directory"
                    " entries to disk.\n");
                return 2;
        }

        printf("Writing the boot sectors.\n");

        rc = bootsec_write(service_id, &cfg);
        if (rc != EOK) {
                printf(NAME ": Error, failed to write the VBR to disk\n");
                return 2;
        }

        printf("Success.\n");

        return 0;
}

/**
 * @}
 */

/* [<][>][^][v][top][bottom][index][help] */
HelenOS homepage, sources at GitHub