/*
* Copyright (c) 2006 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup kernel_generic_ddi
* @{
*/
/**
* @file
* @brief Device Driver Interface functions.
*
* This file contains functions that comprise the Device Driver Interface.
* These are the functions for mapping physical memory and enabling I/O
* space to tasks.
*/
#include <assert.h>
#include <ddi/ddi.h>
#include <proc/task.h>
#include <security/perm.h>
#include <mm/frame.h>
#include <mm/as.h>
#include <mm/km.h>
#include <mm/page.h>
#include <synch/mutex.h>
#include <syscall/copy.h>
#include <adt/odict.h>
#include <arch.h>
#include <align.h>
#include <errno.h>
#include <memw.h>
#include <trace.h>
#include <bitops.h>
#include <arch/asm.h>
/** This lock protects the @c pareas ordered dictionary. */
static MUTEX_INITIALIZE(pareas_lock, MUTEX_PASSIVE);
/** Ordered dictionary of enabled physical memory areas by base address. */
static odict_t pareas;
static void *pareas_getkey(odlink_t *);
static int pareas_cmp(void *, void *);
/** Initialize DDI.
*
*/
void ddi_init(void)
{
odict_initialize(&pareas, pareas_getkey, pareas_cmp);
}
/** Initialize physical area structure.
*
* This should always be called first on the parea structure before
* filling in fields and calling ddi_parea_register.
*
* @param parea Pointer to physical area structure.
*
*/
void ddi_parea_init(parea_t *parea)
{
memset(parea, 0, sizeof(parea_t));
}
/** Enable piece of physical memory for mapping by physmem_map().
*
* @param parea Pointer to physical area structure.
*
*/
void ddi_parea_register(parea_t *parea)
{
mutex_lock(&pareas_lock);
/*
* We don't check for overlaps here as the kernel is pretty sane.
*/
odict_insert(&parea->lpareas, &pareas, NULL);
mutex_unlock(&pareas_lock);
}
/** Norify physical area has been unmapped.
*
* @param parea Physical area
*/
void ddi_parea_unmap_notify(parea_t *parea)
{
parea->mapped = false;
if (parea->mapped_changed != NULL)
parea->mapped_changed(parea->arg);
}
/** Map piece of physical memory into virtual address space of current task.
*
* @param phys Physical address of the starting frame.
* @param pages Number of pages to map.
* @param flags Address space area flags for the mapping.
* @param virt Virtual address of the starting page.
* @param bound Lowest virtual address bound.
*
* @return EOK on success.
* @return EPERM if the caller lacks permissions to use this syscall.
* @return EBADMEM if phys is not page aligned.
* @return ENOENT if there is no task matching the specified ID or
* the physical address space is not enabled for mapping.
* @return ENOMEM if there was a problem in creating address space area.
*
*/
_NO_TRACE static errno_t physmem_map(uintptr_t phys, size_t pages,
unsigned int flags, uintptr_t *virt, uintptr_t bound)
{
assert(TASK);
if ((phys % FRAME_SIZE) != 0)
return EBADMEM;
/*
* Unprivileged tasks are only allowed to map pareas
* which are explicitly marked as such.
*/
bool priv =
((perm_get(TASK) & PERM_MEM_MANAGER) == PERM_MEM_MANAGER);
mem_backend_data_t backend_data;
backend_data.base = phys;
backend_data.frames = pages;
backend_data.anonymous = false;
/*
* Check if the memory region is explicitly enabled
* for mapping by any parea structure.
*/
mutex_lock(&pareas_lock);
odlink_t *odlink = odict_find_eq(&pareas, &phys, NULL);
parea_t *parea = odlink != NULL ?
odict_get_instance(odlink, parea_t, lpareas) : NULL;
if ((parea != NULL) && (parea->frames >= pages)) {
if ((!priv) && (!parea->unpriv)) {
mutex_unlock(&pareas_lock);
return EPERM;
}
goto map;
}
parea = NULL;
mutex_unlock(&pareas_lock);
/*
* Check if the memory region is part of physical
* memory generally enabled for mapping.
*/
irq_spinlock_lock(&zones.lock, true);
size_t znum = find_zone(ADDR2PFN(phys), pages, 0);
if (znum == (size_t) -1) {
/*
* Frames not found in any zone
* -> assume it is a hardware device and allow mapping
* for privileged tasks.
*/
irq_spinlock_unlock(&zones.lock, true);
if (!priv)
return EPERM;
goto map;
}
if (zones.info[znum].flags & (ZONE_FIRMWARE | ZONE_RESERVED)) {
/*
* Frames are part of firmware or reserved zone
* -> allow mapping for privileged tasks.
*/
irq_spinlock_unlock(&zones.lock, true);
if (!priv)
return EPERM;
goto map;
}
irq_spinlock_unlock(&zones.lock, true);
return ENOENT;
map:
backend_data.parea = parea;
if (!as_area_create(TASK->as, flags, FRAMES2SIZE(pages),
AS_AREA_ATTR_NONE, &phys_backend, &backend_data, virt, bound)) {
/*
* The address space area was not created.
* We report it using ENOMEM.
*/
if (parea != NULL)
mutex_unlock(&pareas_lock);
return ENOMEM;
}
/*
* Mapping is created on-demand during page fault.
*/
if (parea != NULL) {
parea->mapped = true;
mutex_unlock(&pareas_lock);
}
return EOK;
}
_NO_TRACE static errno_t physmem_unmap(uintptr_t virt)
{
assert(TASK);
return as_area_destroy(TASK->as, virt);
}
/** Wrapper for SYS_PHYSMEM_MAP syscall.
*
* @param phys Physical base address to map
* @param pages Number of pages
* @param flags Flags of newly mapped pages
* @param virt_ptr Destination virtual address
* @param bound Lowest virtual address bound.
*
* @return 0 on success, otherwise it returns error code found in errno.h
*
*/
sys_errno_t sys_physmem_map(uintptr_t phys, size_t pages, unsigned int flags,
uspace_ptr_uintptr_t virt_ptr, uintptr_t bound)
{
uintptr_t virt;
errno_t rc = copy_from_uspace(&virt, virt_ptr, sizeof(virt));
if (rc != EOK)
return rc;
rc = physmem_map(ALIGN_DOWN(phys, FRAME_SIZE), pages, flags, &virt,
bound);
if (rc != EOK)
return rc;
rc = copy_to_uspace(virt_ptr, &virt, sizeof(virt));
if (rc != EOK) {
physmem_unmap(virt);
return rc;
}
return EOK;
}
sys_errno_t sys_physmem_unmap(uintptr_t virt)
{
return physmem_unmap(virt);
}
/** Get key function for the @c pareas ordered dictionary.
*
* @param odlink Link
* @return Pointer to base address cast as 'void *'
*/
static void *pareas_getkey(odlink_t *odlink)
{
parea_t *parea = odict_get_instance(odlink, parea_t, lpareas);
return (void *) &parea->pbase;
}
/** Key comparison function for the @c pareas ordered dictionary.
*
* @param a Pointer to parea A base
* @param b Pointer to parea B base
* @return -1, 0, 1 iff base of A is less than, equal to, greater than B
*/
static int pareas_cmp(void *a, void *b)
{
uintptr_t pa = *(uintptr_t *)a;
uintptr_t pb = *(uintptr_t *)b;
if (pa < pb)
return -1;
else if (pa == pb)
return 0;
else
return +1;
}
/** Enable range of I/O space for task.
*
* @param id Task ID of the destination task.
* @param ioaddr Starting I/O address.
* @param size Size of the enabled I/O space.
*
* @return 0 on success, EPERM if the caller lacks permissions to use this
* syscall, ENOENT if there is no task matching the specified ID.
*
*/
_NO_TRACE static errno_t iospace_enable(task_id_t id, uintptr_t ioaddr, size_t size)
{
/*
* Make sure the caller is authorised to make this syscall.
*/
perm_t perms = perm_get(TASK);
if (!(perms & PERM_IO_MANAGER))
return EPERM;
task_t *task = task_find_by_id(id);
if (!task)
return ENOENT;
errno_t rc = ENOENT;
irq_spinlock_lock(&task->lock, true);
/* Check that the task belongs to the correct security context. */
if (container_check(CONTAINER, task->container))
rc = ddi_iospace_enable_arch(task, ioaddr, size);
irq_spinlock_unlock(&task->lock, true);
task_release(task);
return rc;
}
/** Disable range of I/O space for task.
*
* @param id Task ID of the destination task.
* @param ioaddr Starting I/O address.
* @param size Size of the enabled I/O space.
*
* @return 0 on success, EPERM if the caller lacks permissions to use this
* syscall, ENOENT if there is no task matching the specified ID.
*
*/
_NO_TRACE static errno_t iospace_disable(task_id_t id, uintptr_t ioaddr, size_t size)
{
/*
* Make sure the caller is authorised to make this syscall.
*/
perm_t perms = perm_get(TASK);
if (!(perms & PERM_IO_MANAGER))
return EPERM;
task_t *task = task_find_by_id(id);
if (!task)
return ENOENT;
errno_t rc = ENOENT;
irq_spinlock_lock(&task->lock, true);
/* Check that the task belongs to the correct security context. */
if (container_check(CONTAINER, task->container))
rc = ddi_iospace_disable_arch(task, ioaddr, size);
irq_spinlock_unlock(&task->lock, true);
task_release(task);
return rc;
}
/** Wrapper for SYS_ENABLE_IOSPACE syscall.
*
* @param uspace_io_arg User space address of DDI argument structure.
*
* @return 0 on success, otherwise it returns error code found in errno.h
*
*/
sys_errno_t sys_iospace_enable(uspace_ptr_ddi_ioarg_t uspace_io_arg)
{
ddi_ioarg_t arg;
errno_t rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
if (rc != EOK)
return (sys_errno_t) rc;
return (sys_errno_t) iospace_enable((task_id_t) arg.task_id,
(uintptr_t) arg.ioaddr, (size_t) arg.size);
}
sys_errno_t sys_iospace_disable(uspace_ptr_ddi_ioarg_t uspace_io_arg)
{
ddi_ioarg_t arg;
errno_t rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
if (rc != EOK)
return (sys_errno_t) rc;
return (sys_errno_t) iospace_disable((task_id_t) arg.task_id,
(uintptr_t) arg.ioaddr, (size_t) arg.size);
}
_NO_TRACE static errno_t dmamem_map(uintptr_t virt, size_t size, unsigned int map_flags,
unsigned int flags, uintptr_t *phys)
{
assert(TASK);
// TODO: implement locking of non-anonymous mapping
return page_find_mapping(virt, phys);
}
_NO_TRACE static errno_t dmamem_map_anonymous(size_t size, uintptr_t constraint,
unsigned int map_flags, unsigned int flags, uintptr_t *phys,
uintptr_t *virt, uintptr_t bound)
{
assert(TASK);
size_t frames = SIZE2FRAMES(size);
if (frames == 0)
return EINVAL;
// FIXME: probably need to ensure that the memory is suitable for DMA
*phys = frame_alloc(frames, FRAME_ATOMIC, constraint);
if (*phys == 0)
return ENOMEM;
mem_backend_data_t backend_data;
backend_data.base = *phys;
backend_data.frames = frames;
backend_data.anonymous = true;
backend_data.parea = NULL;
if (!as_area_create(TASK->as, map_flags, size,
AS_AREA_ATTR_NONE, &phys_backend, &backend_data, virt, bound)) {
frame_free(*phys, frames);
return ENOMEM;
}
return EOK;
}
_NO_TRACE static errno_t dmamem_unmap(uintptr_t virt, size_t size)
{
// TODO: implement unlocking & unmap
return EOK;
}
_NO_TRACE static errno_t dmamem_unmap_anonymous(uintptr_t virt)
{
return as_area_destroy(TASK->as, virt);
}
sys_errno_t sys_dmamem_map(size_t size, unsigned int map_flags, unsigned int flags,
uspace_ptr_uintptr_t phys_ptr, uspace_ptr_uintptr_t virt_ptr, uintptr_t bound)
{
if ((flags & DMAMEM_FLAGS_ANONYMOUS) == 0) {
/*
* Non-anonymous DMA mapping
*/
uintptr_t phys;
errno_t rc = dmamem_map(virt_ptr, size, map_flags,
flags, &phys);
if (rc != EOK)
return rc;
rc = copy_to_uspace(phys_ptr, &phys, sizeof(phys));
if (rc != EOK) {
dmamem_unmap(virt_ptr, size);
return rc;
}
} else {
/*
* Anonymous DMA mapping
*/
uintptr_t constraint;
errno_t rc = copy_from_uspace(&constraint, phys_ptr,
sizeof(constraint));
if (rc != EOK)
return rc;
uintptr_t virt;
rc = copy_from_uspace(&virt, virt_ptr, sizeof(virt));
if (rc != EOK)
return rc;
uintptr_t phys;
rc = dmamem_map_anonymous(size, constraint, map_flags, flags,
&phys, &virt, bound);
if (rc != EOK)
return rc;
rc = copy_to_uspace(phys_ptr, &phys, sizeof(phys));
if (rc != EOK) {
dmamem_unmap_anonymous(virt);
return rc;
}
rc = copy_to_uspace(virt_ptr, &virt, sizeof(virt));
if (rc != EOK) {
dmamem_unmap_anonymous(virt);
return rc;
}
}
return EOK;
}
sys_errno_t sys_dmamem_unmap(uintptr_t virt, size_t size, unsigned int flags)
{
if ((flags & DMAMEM_FLAGS_ANONYMOUS) == 0)
return dmamem_unmap(virt, size);
else
return dmamem_unmap_anonymous(virt);
}
void *pio_map(void *phys, size_t size)
{
#ifdef IO_SPACE_BOUNDARY
if (phys < IO_SPACE_BOUNDARY)
return phys;
#endif
return (void *) km_map((uintptr_t) phys, size, KM_NATURAL_ALIGNMENT,
PAGE_READ | PAGE_WRITE | PAGE_NOT_CACHEABLE);
}
void pio_unmap(void *phys, void *virt, size_t size)
{
#ifdef IO_SPACE_BOUNDARY
if (phys < IO_SPACE_BOUNDARY)
return;
#endif
km_unmap((uintptr_t) virt, size);
}
/** @}
*/