/*
* Copyright (c) 2006 Ondrej Palkovsky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup kernel_generic_mm
* @{
*/
/**
* @file
* @brief Slab allocator.
*
* The slab allocator is closely modelled after OpenSolaris slab allocator.
* @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
*
* with the following exceptions:
* @li empty slabs are deallocated immediately
* (in Linux they are kept in linked list, in Solaris ???)
* @li empty magazines are deallocated when not needed
* (in Solaris they are held in linked list in slab cache)
*
* Following features are not currently supported but would be easy to do:
* @li cache coloring
* @li dynamic magazine growing (different magazine sizes are already
* supported, but we would need to adjust allocation strategy)
*
* The slab allocator supports per-CPU caches ('magazines') to facilitate
* good SMP scaling.
*
* When a new object is being allocated, it is first checked, if it is
* available in a CPU-bound magazine. If it is not found there, it is
* allocated from a CPU-shared slab - if a partially full one is found,
* it is used, otherwise a new one is allocated.
*
* When an object is being deallocated, it is put to a CPU-bound magazine.
* If there is no such magazine, a new one is allocated (if this fails,
* the object is deallocated into slab). If the magazine is full, it is
* put into cpu-shared list of magazines and a new one is allocated.
*
* The CPU-bound magazine is actually a pair of magazines in order to avoid
* thrashing when somebody is allocating/deallocating 1 item at the magazine
* size boundary. LIFO order is enforced, which should avoid fragmentation
* as much as possible.
*
* Every cache contains list of full slabs and list of partially full slabs.
* Empty slabs are immediately freed (thrashing will be avoided because
* of magazines).
*
* The slab information structure is kept inside the data area, if possible.
* The cache can be marked that it should not use magazines. This is used
* only for slab related caches to avoid deadlocks and infinite recursion
* (the slab allocator uses itself for allocating all it's control structures).
*
* The slab allocator allocates a lot of space and does not free it. When
* the frame allocator fails to allocate a frame, it calls slab_reclaim().
* It tries 'light reclaim' first, then brutal reclaim. The light reclaim
* releases slabs from cpu-shared magazine-list, until at least 1 slab
* is deallocated in each cache (this algorithm should probably change).
* The brutal reclaim removes all cached objects, even from CPU-bound
* magazines.
*
* @todo
* For better CPU-scaling the magazine allocation strategy should
* be extended. Currently, if the cache does not have magazine, it asks
* for non-cpu cached magazine cache to provide one. It might be feasible
* to add cpu-cached magazine cache (which would allocate it's magazines
* from non-cpu-cached mag. cache). This would provide a nice per-cpu
* buffer. The other possibility is to use the per-cache
* 'empty-magazine-list', which decreases competing for 1 per-system
* magazine cache.
*
* @todo
* It might be good to add granularity of locks even to slab level,
* we could then try_spinlock over all partial slabs and thus improve
* scalability even on slab level.
*
*/
#include <assert.h>
#include <errno.h>
#include <synch/spinlock.h>
#include <mm/slab.h>
#include <adt/list.h>
#include <memw.h>
#include <align.h>
#include <mm/frame.h>
#include <config.h>
#include <stdio.h>
#include <arch.h>
#include <panic.h>
#include <bitops.h>
#include <macros.h>
#include <cpu.h>
#include <stdlib.h>
IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
static LIST_INITIALIZE(slab_cache_list);
/** Magazine cache */
static slab_cache_t mag_cache;
/** Cache for cache descriptors */
static slab_cache_t slab_cache_cache;
/** Cache for per-CPU magazines of caches */
static slab_cache_t slab_mag_cache;
/** Cache for external slab descriptors
* This time we want per-cpu cache, so do not make it static
* - using slab for internal slab structures will not deadlock,
* as all slab structures are 'small' - control structures of
* their caches do not require further allocation
*/
static slab_cache_t *slab_extern_cache;
/** Slab descriptor */
typedef struct {
slab_cache_t *cache; /**< Pointer to parent cache. */
link_t link; /**< List of full/partial slabs. */
void *start; /**< Start address of first available item. */
size_t available; /**< Count of available items in this slab. */
size_t nextavail; /**< The index of next available item. */
} slab_t;
#ifdef CONFIG_DEBUG
static unsigned int _slab_initialized = 0;
#endif
/*
* Slab allocation functions
*/
/** Allocate frames for slab space and initialize
*
*/
_NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
unsigned int flags)
{
size_t zone = 0;
uintptr_t data_phys =
frame_alloc_generic(cache->frames, FRAME_LOWMEM | flags, 0, &zone);
if (!data_phys)
return NULL;
void *data = (void *) PA2KA(data_phys);
slab_t *slab;
size_t fsize;
if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
slab = slab_alloc(slab_extern_cache, flags);
if (!slab) {
frame_free(KA2PA(data), cache->frames);
return NULL;
}
} else {
fsize = FRAMES2SIZE(cache->frames);
slab = data + fsize - sizeof(*slab);
}
/* Fill in slab structures */
size_t i;
for (i = 0; i < cache->frames; i++)
frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
slab->start = data;
slab->available = cache->objects;
slab->nextavail = 0;
slab->cache = cache;
for (i = 0; i < cache->objects; i++)
*((size_t *) (slab->start + i * cache->size)) = i + 1;
atomic_inc(&cache->allocated_slabs);
return slab;
}
/** Deallocate space associated with slab
*
* @return number of freed frames
*
*/
_NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
{
frame_free(KA2PA(slab->start), slab->cache->frames);
if (!(cache->flags & SLAB_CACHE_SLINSIDE))
slab_free(slab_extern_cache, slab);
atomic_dec(&cache->allocated_slabs);
return cache->frames;
}
/** Map object to slab structure */
_NO_TRACE static slab_t *obj2slab(void *obj)
{
return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
}
/*
* Slab functions
*/
/** Return object to slab and call a destructor
*
* @param slab If the caller knows directly slab of the object, otherwise NULL
*
* @return Number of freed pages
*
*/
_NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
slab_t *slab)
{
if (!slab)
slab = obj2slab(obj);
assert(slab->cache == cache);
size_t freed = 0;
if (cache->destructor)
freed = cache->destructor(obj);
irq_spinlock_lock(&cache->slablock, true);
assert(slab->available < cache->objects);
*((size_t *) obj) = slab->nextavail;
slab->nextavail = (obj - slab->start) / cache->size;
slab->available++;
/* Move it to correct list */
if (slab->available == cache->objects) {
/* Free associated memory */
list_remove(&slab->link);
irq_spinlock_unlock(&cache->slablock, true);
return freed + slab_space_free(cache, slab);
} else if (slab->available == 1) {
/* It was in full, move to partial */
list_remove(&slab->link);
list_prepend(&slab->link, &cache->partial_slabs);
}
irq_spinlock_unlock(&cache->slablock, true);
return freed;
}
/** Take new object from slab or create new if needed
*
* @return Object address or null
*
*/
_NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
{
irq_spinlock_lock(&cache->slablock, true);
slab_t *slab;
if (list_empty(&cache->partial_slabs)) {
/*
* Allow recursion and reclaiming
* - this should work, as the slab control structures
* are small and do not need to allocate with anything
* other than frame_alloc when they are allocating,
* that's why we should get recursion at most 1-level deep
*
*/
irq_spinlock_unlock(&cache->slablock, true);
slab = slab_space_alloc(cache, flags);
if (!slab)
return NULL;
irq_spinlock_lock(&cache->slablock, true);
} else {
slab = list_get_instance(list_first(&cache->partial_slabs),
slab_t, link);
list_remove(&slab->link);
}
void *obj = slab->start + slab->nextavail * cache->size;
slab->nextavail = *((size_t *) obj);
slab->available--;
if (!slab->available)
list_prepend(&slab->link, &cache->full_slabs);
else
list_prepend(&slab->link, &cache->partial_slabs);
irq_spinlock_unlock(&cache->slablock, true);
if ((cache->constructor) && (cache->constructor(obj, flags) != EOK)) {
/* Bad, bad, construction failed */
slab_obj_destroy(cache, obj, slab);
return NULL;
}
return obj;
}
/*
* CPU-Cache slab functions
*/
/** Find a full magazine in cache, take it from list and return it
*
* @param first If true, return first, else last mag.
*
*/
_NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
bool first)
{
slab_magazine_t *mag = NULL;
link_t *cur;
irq_spinlock_lock(&cache->maglock, true);
if (!list_empty(&cache->magazines)) {
if (first)
cur = list_first(&cache->magazines);
else
cur = list_last(&cache->magazines);
mag = list_get_instance(cur, slab_magazine_t, link);
list_remove(&mag->link);
atomic_dec(&cache->magazine_counter);
}
irq_spinlock_unlock(&cache->maglock, true);
return mag;
}
/** Prepend magazine to magazine list in cache
*
*/
_NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
slab_magazine_t *mag)
{
irq_spinlock_lock(&cache->maglock, true);
list_prepend(&mag->link, &cache->magazines);
atomic_inc(&cache->magazine_counter);
irq_spinlock_unlock(&cache->maglock, true);
}
/** Free all objects in magazine and free memory associated with magazine
*
* @return Number of freed pages
*
*/
_NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
slab_magazine_t *mag)
{
size_t i;
size_t frames = 0;
for (i = 0; i < mag->busy; i++) {
frames += slab_obj_destroy(cache, mag->objs[i], NULL);
atomic_dec(&cache->cached_objs);
}
slab_free(&mag_cache, mag);
return frames;
}
/** Find full magazine, set it as current and return it
*
*/
_NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
if (cmag) { /* First try local CPU magazines */
if (cmag->busy)
return cmag;
if ((lastmag) && (lastmag->busy)) {
cache->mag_cache[CPU->id].current = lastmag;
cache->mag_cache[CPU->id].last = cmag;
return lastmag;
}
}
/* Local magazines are empty, import one from magazine list */
slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
if (!newmag)
return NULL;
if (lastmag)
magazine_destroy(cache, lastmag);
cache->mag_cache[CPU->id].last = cmag;
cache->mag_cache[CPU->id].current = newmag;
return newmag;
}
/** Try to find object in CPU-cache magazines
*
* @return Pointer to object or NULL if not available
*
*/
_NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
{
if (!CPU)
return NULL;
irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
slab_magazine_t *mag = get_full_current_mag(cache);
if (!mag) {
irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
return NULL;
}
void *obj = mag->objs[--mag->busy];
irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
atomic_dec(&cache->cached_objs);
return obj;
}
/** Assure that the current magazine is empty, return pointer to it,
* or NULL if no empty magazine is available and cannot be allocated
*
* We have 2 magazines bound to processor.
* First try the current.
* If full, try the last.
* If full, put to magazines list.
*
*/
_NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
if (cmag) {
if (cmag->busy < cmag->size)
return cmag;
if ((lastmag) && (lastmag->busy < lastmag->size)) {
cache->mag_cache[CPU->id].last = cmag;
cache->mag_cache[CPU->id].current = lastmag;
return lastmag;
}
}
/* current | last are full | nonexistent, allocate new */
/*
* We do not want to sleep just because of caching,
* especially we do not want reclaiming to start, as
* this would deadlock.
*
*/
slab_magazine_t *newmag = slab_alloc(&mag_cache,
FRAME_ATOMIC | FRAME_NO_RECLAIM);
if (!newmag)
return NULL;
newmag->size = SLAB_MAG_SIZE;
newmag->busy = 0;
/* Flush last to magazine list */
if (lastmag)
put_mag_to_cache(cache, lastmag);
/* Move current as last, save new as current */
cache->mag_cache[CPU->id].last = cmag;
cache->mag_cache[CPU->id].current = newmag;
return newmag;
}
/** Put object into CPU-cache magazine
*
* @return 0 on success, -1 on no memory
*
*/
_NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
{
if (!CPU)
return -1;
irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
slab_magazine_t *mag = make_empty_current_mag(cache);
if (!mag) {
irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
return -1;
}
mag->objs[mag->busy++] = obj;
irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
atomic_inc(&cache->cached_objs);
return 0;
}
/*
* Slab cache functions
*/
/** Return number of objects that fit in certain cache size
*
*/
_NO_TRACE static size_t comp_objects(slab_cache_t *cache)
{
if (cache->flags & SLAB_CACHE_SLINSIDE)
return (FRAMES2SIZE(cache->frames) - sizeof(slab_t)) /
cache->size;
else
return FRAMES2SIZE(cache->frames) / cache->size;
}
/** Return wasted space in slab
*
*/
_NO_TRACE static size_t badness(slab_cache_t *cache)
{
size_t objects = comp_objects(cache);
size_t ssize = FRAMES2SIZE(cache->frames);
if (cache->flags & SLAB_CACHE_SLINSIDE)
ssize -= sizeof(slab_t);
return ssize - objects * cache->size;
}
/** Initialize mag_cache structure in slab cache
*
*/
_NO_TRACE static bool make_magcache(slab_cache_t *cache)
{
assert(_slab_initialized >= 2);
cache->mag_cache = slab_alloc(&slab_mag_cache, FRAME_ATOMIC);
if (!cache->mag_cache)
return false;
size_t i;
for (i = 0; i < config.cpu_count; i++) {
memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
irq_spinlock_initialize(&cache->mag_cache[i].lock,
"slab.cache.mag_cache[].lock");
}
return true;
}
/** Initialize allocated memory as a slab cache
*
*/
_NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
size_t size, size_t align, errno_t (*constructor)(void *obj,
unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
{
assert(size > 0);
memsetb(cache, sizeof(*cache), 0);
cache->name = name;
if (align < sizeof(sysarg_t))
align = sizeof(sysarg_t);
size = ALIGN_UP(size, align);
cache->size = size;
cache->constructor = constructor;
cache->destructor = destructor;
cache->flags = flags;
list_initialize(&cache->full_slabs);
list_initialize(&cache->partial_slabs);
list_initialize(&cache->magazines);
irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
irq_spinlock_initialize(&cache->maglock, "slab.cache.maglock");
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
(void) make_magcache(cache);
/* Compute slab sizes, object counts in slabs etc. */
if (cache->size < SLAB_INSIDE_SIZE)
cache->flags |= SLAB_CACHE_SLINSIDE;
/* Minimum slab frames */
cache->frames = SIZE2FRAMES(cache->size);
while (badness(cache) > SLAB_MAX_BADNESS(cache))
cache->frames <<= 1;
cache->objects = comp_objects(cache);
/* If info fits in, put it inside */
if (badness(cache) > sizeof(slab_t))
cache->flags |= SLAB_CACHE_SLINSIDE;
/* Add cache to cache list */
irq_spinlock_lock(&slab_cache_lock, true);
list_append(&cache->link, &slab_cache_list);
irq_spinlock_unlock(&slab_cache_lock, true);
}
/** Create slab cache
*
*/
slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
errno_t (*constructor)(void *obj, unsigned int kmflag),
size_t (*destructor)(void *obj), unsigned int flags)
{
slab_cache_t *cache = slab_alloc(&slab_cache_cache, FRAME_ATOMIC);
if (!cache)
panic("Not enough memory to allocate slab cache %s.", name);
_slab_cache_create(cache, name, size, align, constructor, destructor,
flags);
return cache;
}
/** Reclaim space occupied by objects that are already free
*
* @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
*
* @return Number of freed pages
*
*/
_NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
{
if (cache->flags & SLAB_CACHE_NOMAGAZINE)
return 0; /* Nothing to do */
/*
* We count up to original magazine count to avoid
* endless loop
*/
size_t magcount = atomic_load(&cache->magazine_counter);
slab_magazine_t *mag;
size_t frames = 0;
while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
frames += magazine_destroy(cache, mag);
if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
break;
}
if (flags & SLAB_RECLAIM_ALL) {
/* Free cpu-bound magazines */
/* Destroy CPU magazines */
size_t i;
for (i = 0; i < config.cpu_count; i++) {
irq_spinlock_lock(&cache->mag_cache[i].lock, true);
mag = cache->mag_cache[i].current;
if (mag)
frames += magazine_destroy(cache, mag);
cache->mag_cache[i].current = NULL;
mag = cache->mag_cache[i].last;
if (mag)
frames += magazine_destroy(cache, mag);
cache->mag_cache[i].last = NULL;
irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
}
}
return frames;
}
/** Return object to cache, use slab if known
*
*/
_NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
{
if (!obj)
return;
ipl_t ipl = interrupts_disable();
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
(magazine_obj_put(cache, obj)))
slab_obj_destroy(cache, obj, slab);
interrupts_restore(ipl);
atomic_dec(&cache->allocated_objs);
}
/** Check that there are no slabs and remove cache from system
*
*/
void slab_cache_destroy(slab_cache_t *cache)
{
/*
* First remove cache from link, so that we don't need
* to disable interrupts later
*
*/
irq_spinlock_lock(&slab_cache_lock, true);
list_remove(&cache->link);
irq_spinlock_unlock(&slab_cache_lock, true);
/*
* Do not lock anything, we assume the software is correct and
* does not touch the cache when it decides to destroy it
*
*/
/* Destroy all magazines */
_slab_reclaim(cache, SLAB_RECLAIM_ALL);
/* All slabs must be empty */
if ((!list_empty(&cache->full_slabs)) ||
(!list_empty(&cache->partial_slabs)))
panic("Destroying cache that is not empty.");
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE) && cache->mag_cache) {
slab_free(&slab_mag_cache, cache->mag_cache);
}
slab_free(&slab_cache_cache, cache);
}
/** Allocate new object from cache - if no flags given, always returns memory
*
*/
void *slab_alloc(slab_cache_t *cache, unsigned int flags)
{
/* Disable interrupts to avoid deadlocks with interrupt handlers */
ipl_t ipl = interrupts_disable();
void *result = NULL;
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
result = magazine_obj_get(cache);
if (!result)
result = slab_obj_create(cache, flags);
interrupts_restore(ipl);
if (result)
atomic_inc(&cache->allocated_objs);
return result;
}
/** Return slab object to cache
*
*/
void slab_free(slab_cache_t *cache, void *obj)
{
_slab_free(cache, obj, NULL);
}
/** Go through all caches and reclaim what is possible */
size_t slab_reclaim(unsigned int flags)
{
irq_spinlock_lock(&slab_cache_lock, true);
size_t frames = 0;
list_foreach(slab_cache_list, link, slab_cache_t, cache) {
frames += _slab_reclaim(cache, flags);
}
irq_spinlock_unlock(&slab_cache_lock, true);
return frames;
}
/* Print list of caches */
void slab_print_list(void)
{
printf("[cache name ] [size ] [pages ] [obj/pg] [slabs ]"
" [cached] [alloc ] [ctl]\n");
size_t skip = 0;
while (true) {
/*
* We must not hold the slab_cache_lock spinlock when printing
* the statistics. Otherwise we can easily deadlock if the print
* needs to allocate memory.
*
* Therefore, we walk through the slab cache list, skipping some
* amount of already processed caches during each iteration and
* gathering statistics about the first unprocessed cache. For
* the sake of printing the statistics, we realese the
* slab_cache_lock and reacquire it afterwards. Then the walk
* starts again.
*
* This limits both the efficiency and also accuracy of the
* obtained statistics. The efficiency is decreased because the
* time complexity of the algorithm is quadratic instead of
* linear. The accuracy is impacted because we drop the lock
* after processing one cache. If there is someone else
* manipulating the cache list, we might omit an arbitrary
* number of caches or process one cache multiple times.
* However, we don't bleed for this algorithm for it is only
* statistics.
*/
irq_spinlock_lock(&slab_cache_lock, true);
link_t *cur = list_first(&slab_cache_list);
size_t i = 0;
while (i < skip && cur != NULL) {
i++;
cur = list_next(cur, &slab_cache_list);
}
if (cur == NULL) {
irq_spinlock_unlock(&slab_cache_lock, true);
break;
}
skip++;
slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
const char *name = cache->name;
size_t frames = cache->frames;
size_t size = cache->size;
size_t objects = cache->objects;
long allocated_slabs = atomic_load(&cache->allocated_slabs);
long cached_objs = atomic_load(&cache->cached_objs);
long allocated_objs = atomic_load(&cache->allocated_objs);
unsigned int flags = cache->flags;
irq_spinlock_unlock(&slab_cache_lock, true);
printf("%-18s %8zu %8zu %8zu %8ld %8ld %8ld %-5s\n",
name, size, frames, objects, allocated_slabs,
cached_objs, allocated_objs,
flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
}
}
void slab_cache_init(void)
{
/* Initialize magazine cache */
_slab_cache_create(&mag_cache, "slab_magazine_t",
sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void *),
sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
SLAB_CACHE_SLINSIDE);
/* Initialize slab_cache cache */
_slab_cache_create(&slab_cache_cache, "slab_cache_cache",
sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
/* Initialize external slab cache */
slab_extern_cache = slab_cache_create("slab_t", sizeof(slab_t), 0,
NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
#ifdef CONFIG_DEBUG
_slab_initialized = 1;
#endif
}
/** Enable cpu_cache
*
* Kernel calls this function, when it knows the real number of
* processors. Allocate slab for cpucache and enable it on all
* existing slabs that are SLAB_CACHE_MAGDEFERRED
*
*/
void slab_enable_cpucache(void)
{
#ifdef CONFIG_DEBUG
_slab_initialized = 2;
#endif
_slab_cache_create(&slab_mag_cache, "slab_mag_cache",
sizeof(slab_mag_cache_t) * config.cpu_count, sizeof(uintptr_t),
NULL, NULL, SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
irq_spinlock_lock(&slab_cache_lock, false);
list_foreach(slab_cache_list, link, slab_cache_t, slab) {
if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
SLAB_CACHE_MAGDEFERRED)
continue;
(void) make_magcache(slab);
slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
}
irq_spinlock_unlock(&slab_cache_lock, false);
}
/** @}
*/